Skip to main content

Advertisement

Log in

Effects of hepatitis C virus envelope glycoprotein unfolded protein response activation on translation and transcription

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The hepatitis C virus (HCV) envelope glycoproteins have been shown to cause ER stress and induce the unfolded protein response (UPR). Using a bicistronic reporter, we show that the envelope glycoproteins repressed both cap-dependent and HCV IRES-mediated translation in HeLa cells but displayed a differential repression of cap-dependent translation in Huh-7 cells. In contrast, the envelope glycoproteins repressed E2F transcriptional activity in both HeLa and Huh-7 cells and caused increased accumulation of the underphosphorylated retinoblastoma protein. Expression of the envelope glycoproteins induced eIF2α phosphorylation, suggesting a role of the UPR in regulating translation and E2F transcriptional activity. The envelope glycoproteins also enhanced transcriptional activity from the COX-2 promoter and endogenous COX-2 expression in HeLa cells, but not in Huh-7 cells. Together, these results suggest that the envelope glycoproteins may assume more functional roles in viral replication and host cell interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bennett MR, Macdonald K, Chan SW, Boyle JJ, Weissberg PL (1998) Cooperative interactions between RB and p53 regulate cell proliferation, cell senescence, and apoptosis in human vascular smooth muscle cells from atherosclerotic plaques. Circulation Res 82:704–712

    PubMed  CAS  Google Scholar 

  2. Calfon M, Zeng HQ, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96

    Article  PubMed  CAS  Google Scholar 

  3. Chan SW, Egan PA (2005) Hepatitis C virus envelope proteins regulate CHOP via induction of the unfolded protein response. FASEB J 19:1510–1512

    PubMed  CAS  Google Scholar 

  4. Collier AJ, Tang S, Elliott RM (1998) Translation efficiencies of the 5′ untranslated region from representatives of the six major genotypes of hepatitis C virus using a novel bicistronic reporter assay system. J Gen Virol 79:2359–2366

    PubMed  CAS  Google Scholar 

  5. Dubuisson J, Hsu HH, Cheung RC, Greenberg HB, Russell DG, Rice CM (1994) Formation and intracellular localization of hepatitis C virus envelope glycoprotein complexes expressed by recombinant vaccinia and Sindbis viruses. J Virol 68:6147–6160

    PubMed  CAS  Google Scholar 

  6. Dubuisson J, Rice CM (1996) Hepatitis C virus glycoprotein folding: disulfide bond formation and association with calnexin. J Virol 70:778–786

    PubMed  CAS  Google Scholar 

  7. Hamanaka RB, Bennett BS, Cullinan SB, Diehl JA (2005) PERK and GCN2 contribute to eIF2 alpha phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway. Mol Biol Cell 16:5493–5501

    Article  PubMed  CAS  Google Scholar 

  8. Harada S, Suzuki R, Ando A, Watanabe Y, Yagi S, Miyamura T, Saito I (1995) Establishment of a cell-line constitutively expressing E2 glycoprotein of hepatitis-C virus and humoral response of hepatitis-C patients to the expressed protein. J Gen Virol 76:1223–1231

    Article  PubMed  CAS  Google Scholar 

  9. Harding HP, Zhang YH, Ron D (1999) Protein translation and folding are coupled by an endoplasmic- reticulum-resident kinase. Nature 397:271–274

    Article  PubMed  CAS  Google Scholar 

  10. Hassan M, Ghozan H, Abdel-Kader O (2004) Activation of RB/E2F signaling pathway is required for the modulation of hepatitis C virus core protein-induced cell growth in liver and non-liver cells. Cell Signal 16:1375–1385

    Article  PubMed  CAS  Google Scholar 

  11. Hung JH, Su IJ, Lei HY, Wang HC, Lin WC, Chang WT, Huang WY, Chang WC, Chang YS, Chen CC, Lai MD (2004) Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-kappa B and pp38 mitogen-activated protein kinase. J Biol Chem 279:46384–46392

    Article  PubMed  CAS  Google Scholar 

  12. Jhaveri R, Kundu P, Shapiro AM, Venkatesan A, Dasgupta A (2005) Effect of hepatitis C virus core protein on cellular gene expression: Specific inhibition of cyclooxygenase 2. J Infect Dis 191:1498–1506

    Article  PubMed  CAS  Google Scholar 

  13. Joo MS, Hahn YS, Kwon MJ, Sadikot RT, Blackwell TS, Christman JW (2005) Hepatitis C virus core protein suppresses NF-kappa B activation and cyclooxygenase-2 expression by direct interaction with I kappa B kinase beta. J Virol 79:7648–7657

    Article  PubMed  CAS  Google Scholar 

  14. Liberman E, Fong YL, Selby MJ, Choo QL, Cousens L, Houghton M, Yen TSB (1999) Activation of the grp78 and grp94 promoters by hepatitis C virus E2 envelope protein. J Virol 73:3718–3722

    PubMed  CAS  Google Scholar 

  15. Lu LL, Wei L, Peng GQ, Mu YX, Wu KL, Kang L, Yan XH, Zhu Y, Wu HG (2008) NS3 protein of hepatitis C virus regulates cyclooxygenase-2 expression through multiple signaling pathways. Virol 371:61–70

    Article  CAS  Google Scholar 

  16. MacCallum PR, Jack SC, Egan PA, McDermott BT, Elliott RM, Chan SW (2006) Cap-dependent and hepatitis C virus internal ribosome entry site-mediated translation are modulated by phosphorylation of eIF2 alpha under oxidative stress. J Gen Virol 87:3251–3262

    Article  PubMed  CAS  Google Scholar 

  17. Marusawa H, Hijikata M, Chiba T, Shimotohno K (1999) Hepatitis C virus core protein inhibits Fas- and tumor necrosis factor alpha-mediated apoptosis via NF-kappa B activation. J Virol 73:4713–4720

    PubMed  CAS  Google Scholar 

  18. Matsuura Y, Harada S, Suzuki R, Watanabe Y, Inoue Y, Saito I, Miyamura T (1992) Expression of processed envelope protein of hepatitis-C virus in mammalian and insect cells. J Virol 66:1425–1431

    PubMed  CAS  Google Scholar 

  19. Meade EA, McIntyre TM, Zimmerman GA, Prescott SM (1999) Peroxisome proliferators enhance cyclooxygenase-2 expression in epithelial cells. J Biol Chem 274:8328–8334

    Article  PubMed  CAS  Google Scholar 

  20. Moradpour D, Brass V, Gosert R, Wolk B, Blum HE (2002) Hepatitis C: molecular virology and antiviral targets. Trends Mol Med 8:476–482

    Article  PubMed  CAS  Google Scholar 

  21. Munakata T, Nakamura M, Liang YQ, Li K, Lemon SM (2005) Down-regulation of the retinoblastoma tumor suppressor by the hepatitis C virus NS5B RNA-dependent RNA polymerase. Proc Natl Acad Sci USA 102:18159–18164

    Article  PubMed  CAS  Google Scholar 

  22. Nunez O, Fernandez-Martinez A, Majano PL, Apolinario A, Gomez-Gonzalo M, Benedicto I, Lopez-Cabrera M, Bosca L, Clemente G, Garcia-Monzon C, Martin-Sanz P (2004) Increased intrahepatic cyclooxygenase 2, matrix metalloproteinase 2, and matrix metalloproteinase 9 expression is associated with progressive liver disease in chronic hepatitis C virus infection: role of viral core and NS5A proteins. Gut 53:1665–1672

    Article  PubMed  CAS  Google Scholar 

  23. Patrignani P, Tacconelli S, Sciulli MG, Capone ML (2005) New insights into COX-2 biology and inhibition. Brain Res Rev 48:352–359

    Article  PubMed  CAS  Google Scholar 

  24. Pavio N, Taylor DR, Lai MM (2002) Detection of a novel unglycosylated form of hepatitis C virus E2 envelope protein that is located in the cytosol and interacts with PKR. J Virol 76:1265–1272

    PubMed  CAS  Google Scholar 

  25. Pavio N, Romano PR, Graczyk TM, Feinstone SM, Taylor DR (2003) Protein synthesis and endoplasmic reticulum stress can be modulated by the hepatitis C virus envelope protein E2 through the eukaryotic initiation factor 2alpha kinase PERK. J Virol 77:3578–3585

    Article  PubMed  CAS  Google Scholar 

  26. Pietschmann T, Lohmann V, Rutter G, Kurpanek K, Bartenschlager R (2001) Characterization of cell lines carrying self-replicating hepatitis C virus RNAs. J Virol 75:1252–1264

    Article  PubMed  CAS  Google Scholar 

  27. Polager S, Ginsberg D (2008) E2F-at the crossroads of life and death. Trends Cell Biol 18:528–535

    Article  PubMed  CAS  Google Scholar 

  28. Pontsler AV, St Hilaire A, Marathe GK, Zimmerman GA, McIntyre TM (2002) Cyclooxygenase-2 is induced in monocytes by peroxisome proliferator activated receptor gamma and oxidized alkyl phospholipids from oxidized low density lipoprotein. J Biol Chem 277:13029–13036

    Article  PubMed  CAS  Google Scholar 

  29. Poznic M (2009) Retinoblastoma protein: a central processing unit. J Biosci 34:305–312

    Article  PubMed  CAS  Google Scholar 

  30. Rahman MA, Dhar DK, Yamaguchi E, Maruyama S, Sato T, Hayashi H, Ono T, Yamanoi A, Kohno H, Nagasue N (2001) Coexpression of inducible nitric oxide synthase and COX-2 in hepatocellular carcinoma and surrounding liver: possible involvement of COX-2 in the angiogenesis of hepatitis C virus-positive cases. Clin Cancer Res 7:1325–1332

    PubMed  CAS  Google Scholar 

  31. Robert F, Kapp LD, Khan SN, Acker MG, Kolitz S, Kazemi S, Kaufman RJ, Merrick WC, Koromilas AE, Lorsch JR, Pelletier J (2006) Initiation of protein synthesis by hepatitis C virus is refractory to reduced eIF2.GTP.Met-tRNA(i)(Met) ternary complex availability. Mol Biol Cell 17:4632–4644

    Article  PubMed  CAS  Google Scholar 

  32. Sekine-Osajima Y, Sakamoto N, Mishima K, Nakagawa M, Itsui Y, Tasaka M, Nishimura-Sakura Y, Chen CH, Kanai Y, Tsuchiya K, Wakita T, Enomoto N, Watanabe M (2008) Development of plaque assays for hepatitis C virus-JFH1 strain and isolation of mutants with enhanced cytopathogenicity and replication capacity. Virol 371:71–85

    Article  CAS  Google Scholar 

  33. Selby M, Erickson A, Dong C, Cooper S, Parham P, Houghton M, Walker CM (1999) Hepatitis C virus envelope glycoprotein E1 originates in the endoplasmic reticulum and requires cytoplasmic processing for presentation by class I MHC molecules. J Immunol 162:669–676

    PubMed  CAS  Google Scholar 

  34. Sir D, Chen WL, Choi J, Wakita T, Yen TS, Ou JH (2008) Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatol 48:1054–1061

    Article  CAS  Google Scholar 

  35. Taylor DR, Shi ST, Romano PR, Barber GN, Lai MM (1999) Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein. Science 285:107–110

    Article  PubMed  CAS  Google Scholar 

  36. Terenin IM, Dmitriev SE, Andreev DE, Shatsky IN (2008) Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2. Nat Struct Mol Biol 15:836–841

    Article  PubMed  CAS  Google Scholar 

  37. Wek RC, Jiang HY, Anthony TG (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34:7–11

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Charlie Rice for the Huh-7 cell line, Jean Dubuisson for the anti-E1 and anti-E2 antibodies, Makoto Hijikata, Tatsuo Miyamura, Yoshiharu Matsuura, Richard Elliott, Martin Bennett and Thomas McIntyre for plasmids. This work was supported in part by a Medical Research Council Career Establishment grant G0000092 awarded to SWC. Microscopy was performed using a Zeiss epifluorescent microscope and a confocal microscope from a Biotechnology and Biological Sciences Research Council JREI equipment grant (JR00UMJAEQ, JR00UMJARC) to SWC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiu-Wan Chan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2009_495_MOESM1_ESM.ppt

Subcellular localization of E1 and E2 proteins. Fluorescent microscopy showing the subcellular localization of the ER-targeting E1 and E2 and the gfp-E1 and gfp-E2 devoid of signal peptides. Supplementary figure (PPT 1666 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, SW., Egan, P.A. Effects of hepatitis C virus envelope glycoprotein unfolded protein response activation on translation and transcription. Arch Virol 154, 1631–1640 (2009). https://doi.org/10.1007/s00705-009-0495-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-009-0495-5

Keywords

Navigation