Skip to main content

Advertisement

Log in

Quantitative estimation of plum pox virus targets acquired and transmitted by a single Myzus persicae

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The viral charge acquired and inoculated by single aphids in a non-circulative transmission is estimated using plum pox virus (PPV). A combination of electrical penetration graph and TaqMan real-time RT-PCR techniques was used to establish the average number of PPV RNA targets inoculated by an aphid in a single probe (26,750), approximately half of the acquired ones. This number of PPV targets is responsible for a systemic infection of 20% on the inoculated receptor plants. No significant differences were found between the number of PPV RNA targets acquired after one and after five intracellular punctures (pd), but the frequency of infected receptor plants was higher after 5 pd. The percentage of PPV-positive leaf discs after just 1 pd of inoculation probe (28%/4,603 targets) was lower than after 5 pd (45.8%/135 × 106 targets). The methodology employed could be easily extended to other virus–vector–host combinations to improve the accuracy of models used in virus epidemiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nault LR (1997) Arthropod transmission of plant viruses: a new synthesis. Ann Entomol Soc Am 90:521–541

    Google Scholar 

  2. Hull R (2002) Matthews’ plant virology, 4th edn. Academic Press, San Diego

    Google Scholar 

  3. Plumb RT (2002) Other vectors. Adv Bot Res 36:199–202

    Article  Google Scholar 

  4. Gray SM, Banerjee N (1999) Mechanisms of arthropod transmission of plant and animal viruses. Microbiol Mol Biol Rev 63(1):128–148

    PubMed  CAS  Google Scholar 

  5. Powell G (2005) Intracellular salivation is the aphid activity associated with inoculation of non-persistently transmitted viruses. J Gen Virol 86:469–472

    Article  PubMed  CAS  Google Scholar 

  6. Ng JCK, Falk BW (2006) Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu Rev Phytopathol 44:183–212

    Article  PubMed  CAS  Google Scholar 

  7. García JA, Cambra M (2007) Plum pox virus and sharka disease. Plant Viruses 1(1):69–79

    Google Scholar 

  8. Gildow F, Damsteegt V, Stone A, Schneider W, Luster D, Levy L (2004) Plum Pox in North America: identification of aphid vectors and a potential role for fruit in virus spread. Phytopathology 94:868–874

    Article  PubMed  Google Scholar 

  9. Glasa M, Boeglin M, Labonne G (2004) Aphid transmission of natural recombinant Plum pox virus isolates to different Prunus ssp.—a contribution for understanding the epidemiology of an atypical PPV. Acta Hortic 657:217–220

    CAS  Google Scholar 

  10. Cambra M, Bertolini E, Olmos A, Capote N (2006) Molecular methods for detection and quantification of virus in aphids. In: Cooper I, Kuhne T, Polischuk V (eds) Virus diseases and crop biosecurity. Springer, Dordrecht, pp 81–88

    Chapter  Google Scholar 

  11. Pirone TP, Blanc S (1996) Helper-dependent vector transmission of plant viruses. Annu Rev Phytopathol 34:227–247

    Article  PubMed  CAS  Google Scholar 

  12. Wang RY, Ammar ED, Thornbury DW, López-Moya JJ, Pirone TP (1996) Loss of potyvirus transmissibility and helper-component activity correlate with non-retention of virions in aphid stylets. J Gen Virol 77:861–867

    Article  PubMed  CAS  Google Scholar 

  13. Froissart R, Michalakis Y, Blanc S (2002) Helper component-transcomplementation in the vector transmission of plant viruses. Phytopathology 92:576–579

    Article  PubMed  Google Scholar 

  14. Prado E, Tjallingii WF (1994) Aphid activities during sieve element punctures. Entomol Exp Appl 72(2):157–166

    Article  Google Scholar 

  15. Powell G, Pirone T, Hardie J (1995) Aphid stylet activities during potyvirus acquisition from plants and an in vitro system that correlate with subsequent transmission. Eur J Plant Pathol 101:411–420

    Article  Google Scholar 

  16. Martín B, Collar JL, Tjallingii WF, Fereres A (1997) Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of nonpersistently transmitted plant viruses. J Gen Virol 78:2701–2705

    PubMed  Google Scholar 

  17. Palacios I, Drucker M, Blanc S, Leite S, Moreno A, Fereres A (2002) Cauliflower mosaic virus (CaMV) is preferentially acquired from the phloem by its aphid vectors. J Gen Virol 83:3163–3171

    PubMed  CAS  Google Scholar 

  18. Moreno A, Palacios I, Blanc S, Fereres A (2005) Intracellular salivation is the mechanism involved in the inoculation of Cauliflower mosaic virus by its major vectors, Brevicoryne brassicae and Myzus persicae. Ann Entomol Soc Am 98(6):763–769

    Article  Google Scholar 

  19. Powell G (1991) Cell membrane punctures during epidermal penetrations by aphids: consequences for the transmission of two potyvirus. Ann Appl Biol 119:313–321

    Article  Google Scholar 

  20. Fereres A (2007) The role of aphid salivation in the transmission of plant viruses. Phytoparasitica 3:3–7

    Article  Google Scholar 

  21. Pirone TP, Thornbury DW (1988) Quantity of virus required for aphid transmission of a potyvirus. Phytopathology 78(1):104–407

    Article  Google Scholar 

  22. Marroquín C, Olmos A, Gorris MT, Bertolini E, Martínez MC, Carbonell E, Hermoso de Mendoza A, Cambra M (2004) Estimation of the number of aphids carrying Citrus tristeza virus that visit adult citrus trees. Virus Res 100:101–108

    Article  PubMed  Google Scholar 

  23. Olmos A, Bertolini E, Gil M, Cambra M (2005) Real-time assay for quantitative detection of non persistently transmitted Plum pox virus RNA targets in a single aphids. J Virol Methods 128:151–155

    Article  PubMed  CAS  Google Scholar 

  24. Bertolini E, Moreno A, Capote N, Olmos A, De Luis A, Vidal E, Pérez-Panadés J, Cambra M (2008) Quantitative detection of Citrus tristeza virus in plant tissues and single aphids by real-time RT-PCR. Eur J Plant Pathol 120(2):177–188

    Article  CAS  Google Scholar 

  25. Saponari M, Manjunath K, Yokomi RK (2008) Quantitative detection of Citrus tristeza virus in citrus and aphids by real-time reverse transcription-PCR (TaqMan®). J Virol Methods 147(1):43–53

    Article  PubMed  CAS  Google Scholar 

  26. Moury B, Fabre F, Senoussi R (2007) Estimation of the number of virus particles transmitted by an insect vector. Proc Natl Acad Sci 104(45):17891–17896

    Article  PubMed  CAS  Google Scholar 

  27. Betancourt M, Fereres A, Fraile A, García-Arenal F (2008) Estimation of the effective number of founders that initiate an infection after aphid transmission of a multipartite plant virus. J Virol 82:12416–12421

    Article  PubMed  CAS  Google Scholar 

  28. Carlebach R, Raccah B, Loebesntein G (1982) Detection of potato virus Y in the aphid Myzus persicae by enzyme-linked immunosorbent assay (ELISA). Ann Appl Biol 10:511–516

    Article  Google Scholar 

  29. Gera A, Loebenstein G, Raccah B (1978) Detection of Cucumber mosaic virus in viruliferous aphids by enzyme-linked immunosorbent assay. Virology 86:542–545

    Article  PubMed  CAS  Google Scholar 

  30. Cambra M, Hermoso de Mendoza A, Moreno P, Navarro L (1982) Use an enzyme-linked immunosorbent assay (ELISA) for detection of Citrus tristeza virus (CTV) in different aphid species. Proc Int Soc Citriculture 1:444–448

    Google Scholar 

  31. Fabre F, Kervarrec C, Mieuzet L, Riault G, Vialatte A, Jacquot E (2003) Improvement of Barley yellow dwarf virus-PAV detection in single aphids using a fluorescent real time RT-PCR. J Virol Methods 110:51–60

    Article  PubMed  CAS  Google Scholar 

  32. Ali A, Li H, Schenider WL, Sherman DJ, Gray S, Smith D, Roossinck MJ (2006) Analysis of genetic bottlenecks during horizontal transmission of Cucumber mosaic virus. J Virol 80(17):8345–8350

    Article  PubMed  CAS  Google Scholar 

  33. Ruiz-Ruiz S, Moreno P, Guerri P, Ambrós S (2007) A real-time RT-PCR assay for detection and absolute quantitation of Citrus tristeza virus in different plant tissues. J Virol Methods 145(2):96–105

    Article  PubMed  CAS  Google Scholar 

  34. Cambra M, Asensio M, Gorris MT, Pérez E, Camarasa E, García JA, López-Moya JJ, López Abella D, Vela D, Sanz A (1994) Detection of Plum pox potyvirus using monoclonal antibodies to structural and non structural proteins. Bull OEPP/EPPO Bull 24:569–577

    Google Scholar 

  35. EPPO (2004) Diagnostic protocol for regulated pests. Plum pox potyvirus. Bull OEPP/EPPO Bull 34:247–256

    Google Scholar 

  36. Olmos A, Dasí MA, Candresse T, Cambra M (1996) Print capture PCR: a simple and highly sensitive method for the detection of plum pox virus (PPV) in plant tissues. Nucleic Acids Res 24:2192–2194

    Article  PubMed  CAS  Google Scholar 

  37. Capote N, Bertolini E, Olmos A, Martinez MC, Cambra M (2009) Direct sample preparation methods for detection of Plum pox virus by real-time RT-PCR. Int Microbiol 12:1–6

    PubMed  CAS  Google Scholar 

  38. Fereres A, Pérez P, Gemeno C, Ponz F (1993) Transmission of Spanish pepper and potato-PVY isolates by aphid (Homoptera: Aphididae) vectors: epidemiological implications. Environ Entomol 22(6):1260–1265

    Google Scholar 

  39. Olmos A, Cambra M, Esteban O, Gorris MT, Terrada E (1999) New device and method for capture, reverse transcription and nested PCR in a single closed-tube. Nucleic Acids Res 27(6):1564–1565

    Article  PubMed  CAS  Google Scholar 

  40. Hardie J, Holyoak M, Taylor NJ, Griffiths DC (1992) The combination of electronic monitoring and video-assisted observations of plant penetration by aphids and behavioural effects of polygodial. Entomol Exp Appl 62:233–239

    Article  Google Scholar 

  41. Soosaar LM, Burch-Smith TM, Dinesh-Kumar SP (2005) Mechanisms of plant resistance to viruses. Nat Rev 3:789–798

    Article  CAS  Google Scholar 

  42. French R, Steger DC (2003) Evolution of Wheat streak mosaic virus: dynamics of population growth within plants may explain limited variation. Annu Rev Phytopathol 41:199–214

    Article  PubMed  CAS  Google Scholar 

  43. Collar JL, Fereres A (1998) Nonpersistent virus transmission efficiency determined by aphid probing behavior during intracellular punctures. Environ Entomol 27:583–591

    Google Scholar 

  44. Collar JL, Avilla C, Fereres A (1997) New correlations between aphid stylet paths and nonpersistent virus transmission. Environ Entomol 26:537–544

    Google Scholar 

  45. Fereres A, Collar JL (2001) Analysis of noncirculative transmission by electrical penetration graphs. In: Harris KF, Smith OP, Duffus JE (eds) Virus-insect-plant interactions. Academic Press, San Diego, pp 87–109

    Chapter  Google Scholar 

  46. Cambra M, Gorris MT, Capote N, Asensio M, Martínez MC, Bertolini E, Collado C, Hermoso de Mendoza A, Mataix E, López A (2004) Epidemiology of Plum pox virus in Japanese plums in Spain. Acta Hortic 657:195–200

    Google Scholar 

Download references

Acknowledgments

This work was supported by GV/2007/169 project of the Generalitat Valenciana and by AGL2005-01546/AGR project of the Ministerio de Educación y Ciencia of Spain. A. Moreno is recipient of a JAE-Doc contract from Consejo Superior de Investigaciones Científicas. Dr. E. A. Carbonell and J. Pérez-Penadés (Biometry Unit of IVIA) assisted in statistical analysis. Dr. N. Duran-Vila critically read the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Cambra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, A., Fereres, A. & Cambra, M. Quantitative estimation of plum pox virus targets acquired and transmitted by a single Myzus persicae . Arch Virol 154, 1391–1399 (2009). https://doi.org/10.1007/s00705-009-0450-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-009-0450-5

Keywords

Navigation