Skip to main content

Advertisement

Log in

HSV immune complex (HSV-IgG: IC) and HSV-DNA elicit the production of angiogenic factor VEGF and MMP-9

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Angiogenesis and inflammatory mediators are critical pathogenic factors in herpetic stromal keratitis (HSK). Since disease progresses without infectious virus, HSV-DNA and HSV-IgG complexes (HSV-IC) may contribute to HSK by triggering these factors. Production of VEGF and MMP-9 was studied in vitro using corneal epithelial cells (HCE), fibroblasts (HCRF) and macrophages (THP-1). VEGF was elevated in HCRF and THP-1 following treatment with HSV-DNA and HSV-IC. MMP-9 was elevated in THP-1 but not in corneal cells. When anti-HSV-IgG(Fab′)2 complexes stimulated THP-1, MMP-9 was reduced to control levels. Pretreatment of THP-1 with anti-TLR-2 and -3 inhibited MMP-9 production. Thus, HSV-IC may stimulate THP-1 through the Fc receptor and TLRs. Proinflammatory cytokines (IL-1b, IL-6, and TNF-α) increased VEGF and MMP-9 in corneal cells and macrophages. These studies indicate that the continued presence of HSV-DNA and HSV-IC contribute to angiogenesis and inflammation in HSK. Thus, cytokines and TLRs may be potential targets for intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akira S, Takeda K (2004) Toll like receptor signaling. Nat Rev Immunol 4:499–511

    PubMed  CAS  Google Scholar 

  2. Akira S, Uematsu S et al (2006) Pathogen recognition and innate immunity. Cell 124:783–880

    PubMed  CAS  Google Scholar 

  3. Banerjee K, Biswas PS et al (2005) Elucidating the protective and pathologic T cell species in the virus-induced corneal immunoinflammatory condition herpetic stromal keratitis. J Leukocyte Biol 77:24–32

    PubMed  CAS  Google Scholar 

  4. Biswas PS, Banerjee K et al (2006) Involvement of IL-6 in the paracrine production of VEGF in ocular HSV-1 infection. Exp Eye Res 82:46–54

    PubMed  CAS  Google Scholar 

  5. Biswas PS, Rouse BT (2005) Early events in HSV keratitis-setting the stage for a blinding disease. Microbes Infect 7:799–810

    PubMed  CAS  Google Scholar 

  6. Blander JM, Medzhitov R (2004) Regulation of phagosome maturation by signals from toll-like receptors. Science 304:1014–1018

    PubMed  CAS  Google Scholar 

  7. Blander JM (2007) Coupling Toll-like receptor signaling with phagocytosis: potentiation of antigen presentation. Trends Immunol 28:19–25

    PubMed  CAS  Google Scholar 

  8. Cox D, Tseng CC et al (1997) A requirement for phosphoinositol 3-kinase in pseodopod extension. J Biol Chem 274:1240–1247

    Google Scholar 

  9. Hayashi K, Hooper LC et al (2006) Herpes simplex virus 1(HSV-1) DNA and immune complex (HSV-1-human IgG) elicit vigorous interleukin 6 release from infected corneal cells via Toll-like receptors. J Gen Virol 87:2161–2169

    PubMed  CAS  Google Scholar 

  10. Kwong AD, Kruper JA et al (1988) Herpes simplex virus virion host shut off function. J Virol 62:912–921

    PubMed  CAS  Google Scholar 

  11. Lee S, Zheng M et al (2002) Role of matrix metalloproteinase-9 in angiogenesis caused by ocular infection with herpes simplex virus. J Clin Invest 110:1105–1111

    PubMed  CAS  Google Scholar 

  12. Li X, Tupper JC et al (2003) Phosphoinositide-3 kinase mediate Toll-like receptor 4-induced activation of NF-kappa B in endothelial cells. Infect Immun 71:4414–4420

    PubMed  CAS  Google Scholar 

  13. Liesengang TS (2001) Herpes simplex virus epidemiology and ocular importance. Cornea 20:1–13

    Google Scholar 

  14. Matsumoto M, Kikkawa S et al (2002) Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Biochem Biophys Res Commun 293:1364–1369

    PubMed  CAS  Google Scholar 

  15. Meyers-Elliott RH, Pettit TH et al (1980) Viral antigens in the immune ring of herpes simplex stromal keratits. Arch Ophthalmol 98:897–904

    PubMed  CAS  Google Scholar 

  16. Opremcak EM, Rice BA et al (1990) Histology and immunohistology of Ig-h-1-restricted herpes simplex keratitisin Balb/c congenic mice. Invest Ophthalmol Vis Sci 31:305–312

    PubMed  CAS  Google Scholar 

  17. Sciortino M-T, Suzuki M et al (2001) RNAs extracted from herpes simplex virus 1 virions: apparent selectivity of viral but not cellular RNAs packaged in virions. J Virol 75:8105–8116

    PubMed  CAS  Google Scholar 

  18. Sarkar SN, Peters KL et al (2004) Novel roles of TLR3 tyrosine phosphorylation and PI Kinase in double strand RNA signaling. Nat Struct Mol Biol 11:1060–1067

    PubMed  CAS  Google Scholar 

  19. Shimomura Y, Deai T et al (2007) Corneal buttons obtained from HSK patients harbor high copy number of the HSV genome. Cornea 26:190–193

    PubMed  Google Scholar 

  20. Staats HF, Lausch RN (1993) Cytokine expression in vivo during murine herpetic stromal keratits. Effect of protective antibody therapy. J Immunol 151:277–283

    PubMed  CAS  Google Scholar 

  21. Toker A, Cantley LC (1997) Signaling through the lipid products of phosphoinositide-3-OH-kinase. Nature 387:673–676

    PubMed  CAS  Google Scholar 

  22. Tsuchiya S, Kobayashi Y et al (1982) Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res 42:1530–1536

    PubMed  CAS  Google Scholar 

  23. Ueta M, Hamuro J et al (2005) Triggering of TLR3 by poly I:C in human corneal epithelial cells to induce inflammatory cytopkines. Biochem Biophys Res Commun 331:285–294

    PubMed  CAS  Google Scholar 

  24. Underhill DM, Gantner B (2004) Integration of Toll-like receptor and phagocytic signaling for tailored immunity. Microbes Infect 6:1368–1373

    PubMed  CAS  Google Scholar 

  25. Underhill DM, Ozinsky A et al (1999) The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401:811–815

    PubMed  CAS  Google Scholar 

  26. Viahos CJ, Matter WF et al (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8 phenyl-4H-I-benzopyran-4-one (LY294002). J Boiol Chem 269:5241–5248

    Google Scholar 

  27. Yang Y-N, Bauer D et al (2003) Matrix metalloproteases (MMP-2 and 9) and tissue inhibitors of matrix metalloproteinases (TIMP-1 and 2) during the course of experimental necrotizing herpetic keratitis. Exp Eye Res 77:227–237

    PubMed  CAS  Google Scholar 

  28. Zarember KA, Godowski PJ (2002) Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocutes in response to microbes, their products, and cytokines. J Immunol 168:554–561

    PubMed  CAS  Google Scholar 

  29. Zheng M, Deshpande S et al (2001) Contribution of vascular endothelial growth factor in the neovacularization process during the pathogenesisof herpetic stromal keratitis. J Virol 75:9828–9835

    PubMed  CAS  Google Scholar 

  30. Zheng M, Schwarz MA et al (2001) Control of stromal keratits by inhibition of neovascularization. Am J Pathol 159:1021–1029

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Chandraskharam Naginini for providing us HCRFs. This research was supported (in part) by the Intramural Research program of NIH National Eye Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kozaburo Hayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, K., Hooper, L.C., Detrick, B. et al. HSV immune complex (HSV-IgG: IC) and HSV-DNA elicit the production of angiogenic factor VEGF and MMP-9. Arch Virol 154, 219–226 (2009). https://doi.org/10.1007/s00705-008-0303-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-008-0303-7

Keywords

Navigation