Skip to main content

Advertisement

Log in

An improved self-deleting retroviral vector derived from avian leukemia and sarcoma virus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

We have previously developed a self-deleting avian leukosis and sarcoma virus (ALSV)- based retroviral vector carrying an additional attachment (att) sequence. Resulting proviruses underwent deletion of viral sequences and were flanked either by two LTRs (LTRs proviruses) or by the additional att sequence and the 3′ LTR (att proviruses). Herein, we have tried to increase (1) the self-deleting properties of this vector, either by raising the selection pressure applied on target cells or by optimizing the size of the internal att sequence, (2) the titer of the vector by deleting or inverting some viral sequences. Moreover, a new type of provirus flanked by att sequences at each end was isolated. Finally, under specific conditions, 100% of proviruses had internal sequences deleted, and as many as 92–100% of proviruses were no longer mobilizable by a replication-competent virus. The inactivation procedure achieved here might improve the biosafety of retroviral vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Clark J, Whitelaw B (2003) A future for transgenic livestock. Nat Rev Genet 4:825–833

    Article  PubMed  CAS  Google Scholar 

  2. Hofmann A, Kessler B, Ewerling S, Weppert M, Vogg B, Ludwig H, Stojkovic M, Boelhauve M, Brem G, Wolf E, Pfeifer A (2003) Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep 4:1054–1060

    Article  PubMed  CAS  Google Scholar 

  3. Pfeifer A (2004) Lentiviral transgenesis. Transgenic Res 13:513–522

    Article  PubMed  CAS  Google Scholar 

  4. Ailles LE, Naldini L (2002) HIV-1-derived lentiviral vectors. Curr Top Microbiol Immunol 261:31–52

    PubMed  CAS  Google Scholar 

  5. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A, Morecki S, Andolfi G, Tabucchi A, Carlucci F, Marinello E, Cattaneo F, Vai S, Servida P, Miniero R, Roncarolo MG, Bordignon C (2002) Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296:2410–2413

    Article  PubMed  CAS  Google Scholar 

  6. Cavazzana-Calvo M, Thrasher A, Mavilio F (2004) The future of gene therapy. Nature 427:779–781

    Article  PubMed  CAS  Google Scholar 

  7. Sinn PL, Sauter SL, McCray PB Jr (2005) Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors-design, biosafety, and production. Gene Ther 12:1089–1098

    Article  PubMed  CAS  Google Scholar 

  8. Hu WS, Pathak VK (2000) Design of retroviral vectors and helper cells for gene therapy. Pharmacol Rev 52:493–511

    PubMed  CAS  Google Scholar 

  9. Xu K, Ma H, McCown TJ, Verma IM, Kafri T (2001) Generation of a stable cell line producing high-titer self-inactivating lentiviral vectors. Mol Ther 3:97–104

    Article  PubMed  CAS  Google Scholar 

  10. Cockrell AS, Ma H, Fu K, McCown TJ, Kafri T (2006) A trans-lentiviral packaging cell line for high-titer conditional self-inactivating HIV-1 vectors. Mol Ther 14:276–284

    Article  PubMed  CAS  Google Scholar 

  11. Loewen N, Poeschla EM (2005) Lentiviral vectors. Adv Biochem Eng Biotechnol 99:169–191

    PubMed  CAS  Google Scholar 

  12. Hughes SH (2004) The RCAS vector system. Folia Biol (Praha) 50:107–119

    CAS  Google Scholar 

  13. Ronfort C, Legras C, Verdier G (1997) The use of retroviral vectors for gene transfer into bird embryo. In: Transgenic animals: generation and use. Harwood Academic Publishers GMBH, Switzerland, pp 83–94

  14. Dong B, Silverman RH, Kandel ES (2008) A natural human retrovirus efficiently complements vectors based on murine leukemia virus. PLoS ONE 3:e3144

    Article  PubMed  Google Scholar 

  15. Cockrell AS, Kafri T (2007) Gene delivery by lentivirus vectors. Mol Biotechnol 36:184–204

    Article  PubMed  CAS  Google Scholar 

  16. Logan AC, Haas DL, Kafri T, Kohn DB (2004) Integrated self-inactivating lentiviral vectors produce full-length genomic transcripts competent for encapsidation and integration. J Virol 78:8421–8436

    Article  PubMed  CAS  Google Scholar 

  17. Choulika A, Guyot V, Nicolas JF (1996) Transfer of single gene-containing long terminal repeats into the genome of mammalian cells by a retroviral vector carrying the cre gene and the loxP site. J Virol 70:1792–1798

    PubMed  CAS  Google Scholar 

  18. Russ AP, Friedel C, Grez M, von Melchner H (1996) Self-deleting retrovirus vectors for gene therapy. J Virol 70:4927–4932

    PubMed  CAS  Google Scholar 

  19. Fernex C, Dubreuil P, Mannoni P, Bagnis C (1997) Cre/loxP-mediated excision of a neomycin resistance expression unit from an integrated retroviral vector increases long terminal repeat- driven transcription in human hematopoietic cells. J Virol 71:7533–7540

    PubMed  CAS  Google Scholar 

  20. Julias JG, Hash D, Pathak VK (1995) E-vectors: development of novel self-inactivating and self-activating retroviral vectors for safer gene therapy. J Virol 69:6839–6846

    PubMed  CAS  Google Scholar 

  21. Delviks KA, Hu WS, Pathak VK (1997) Psi- vectors: murine leukemia virus-based self-inactivating and self-activating retroviral vectors. J Virol 71:6218–6224

    PubMed  CAS  Google Scholar 

  22. Delviks KA, Pathak VK (1999) Development of murine leukemia virus-based self-activating vectors that efficiently delete the selectable drug resistance gene during reverse transcription. J Virol 73:8837–8842

    PubMed  CAS  Google Scholar 

  23. Grunwald T, Pedersen FS, Wagner R, Uberla K (2004) Reducing mobilization of simian immunodeficiency virus based vectors by primer complementation. J Gene Med 6:147–154

    Article  PubMed  CAS  Google Scholar 

  24. Lund AH, Duch M, Lovmand J, Jorgensen P, Pedersen FS (1997) Complementation of a primer binding site-impaired murine leukemia virus-derived retroviral vector by a genetically engineered tRNA-like primer. J Virol 71:1191–1195

    PubMed  CAS  Google Scholar 

  25. Brown PO (1997) Integration in retroviruses. In: Coffin JM, Hugues SH, Varmus HE (eds) Cold Spring Harbor Laboratory Press, Cold spring Harbor, pp 161–204

  26. Torne-Celer C, Moreau K, Faure C, Chebloune Y, Verdier G, Ronfort C (2008) A novel self-deleting vector carrying an additional sequence recognized by the viral Integrase (IN). Virus Res 135:72–82

    Article  PubMed  CAS  Google Scholar 

  27. Moscovici C, Moscovici MG, Jimenez H, Lai MM, Hayman MJ, Vogt PK (1977) Continuous tissue culture cell lines derived from chemically induced tumors of Japanese quail. Cell 11:95–103

    Article  PubMed  CAS  Google Scholar 

  28. Cosset FL, Legras C, Chebloune Y, Savatier P, Thoraval P, Thomas JL, Samarut J, Nigon VM, Verdier G (1990) A new avian leukosis virus-based packaging cell line that uses two separate transcomplementing helper genomes. J Virol 64:1070–1078

    PubMed  CAS  Google Scholar 

  29. Frisby DP, Weiss RA, Roussel M, Stehelin D (1979) The distribution of endogenous chicken retrovirus sequences in the DNA of galliform birds does not coincide with avian phylogenetic relationships. Cell 17:623–634

    Article  PubMed  CAS  Google Scholar 

  30. Ronfort C, Chebloune Y, Cosset FL, Faure C, Nigon VM, Verdier G (1995) Structure and expression of endogenous retroviral sequences in the permanent LMH chicken cell line. Poultry Sci 74:127–135

    CAS  Google Scholar 

  31. Emerman M, Temin HM (1984) Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell 39:449–467

    Article  PubMed  CAS  Google Scholar 

  32. Emerman M, Temin HM (1986) Quantitative analysis of gene suppression in integrated retrovirus vectors. Mol Cell Biol 6:792–800

    PubMed  CAS  Google Scholar 

  33. Emerman M, Temin HM (1986) Comparison of promoter suppression in avian and murine retrovirus vectors. Nucleic Acids Res 14:9381–9396

    Article  PubMed  CAS  Google Scholar 

  34. Panganiban AT, Talbot KJ (1993) Efficient insertion from an internal long terminal repeat (LTR)-LTR sequence on a reticuloendotheliosis virus vector is imprecise and cell specific. J Virol 67:1564–1571

    PubMed  CAS  Google Scholar 

  35. Panganiban AT, Temin HM (1984) Circles with two tandem LTRs are precursors to integrated retrovirus DNA. Cell 36:673–679

    Article  PubMed  CAS  Google Scholar 

  36. Ellis J, Bernstein A (1989) Retrovirus vectors containing an internal attachment site: evidence that circles are not intermediates to murine retrovirus integration. J Virol 63:2844–2846

    PubMed  CAS  Google Scholar 

  37. Lobel LI, Murphy JE, Goff SP (1989) The palindromic LTR–LTR junction of Moloney murine leukemia virus is not an efficient substrate for proviral integration. J Virol 63:2629–2637

    PubMed  CAS  Google Scholar 

  38. Soriano P, Friedrich G, Lawinger P (1991) Promoter interactions in retrovirus vectors introduced into fibroblasts and embryonic stem cells. J Virol 65:2314–2319

    PubMed  CAS  Google Scholar 

  39. Bushman AR, Burnett L, Berg P (1981) The SV40 nucleotide sequence. Appendix A. In: Tooze J (ed) DNA tumor viruses, 2nd edn. Cold Spring Harbor Laboratory, New York, pp 799–841

  40. Valera A, Perales JC, Hatzoglou M, Bosch F (1994) Expression of the neomycin-resistance (neo) gene induces alterations in gene expression and metabolism. Hum Gene Ther 5:449–456

    Article  PubMed  CAS  Google Scholar 

  41. von Melchner H, Housman DE (1988) The expression of neomycin phosphotransferase in human promyelocytic leukemia cells (HL60) delays their differentiation. Oncogene 2:137–140

    Google Scholar 

  42. Thoraval P, Savatier P, Xiao JH, Mallet F, Samarut J, Verdier G, Nigon V (1987) Partial nucleotide sequence of the avian erythroblastosis virus (AEV ES4). Nucleic Acids Res 15:9612

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from the Institut National de la Recherche Agronomique (INRA), the Centre National de la Recherche Scientifique (CNRS), and the Association pour la Recherche sur le Cancer (ARC). We thank Transgene SA (Strasbourg), the INRA and the Ligue Nationale Contre le Cancer for fellowships (CTC) and the Ministère de l’Education Nationale et de la Recherche (MENRT) for fellowships (KM). Special thanks to Dr. Antoine Drynda and Dr. Yahia Chebloune for their helpful contributions to this work as well as to Dr. Christophe Terzian for statistical analyses. Thanks are also due to Dr. M. Mehtali (Transgene) and collaborators for fruitful discussions and to the INRA translation service for correction of the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinne Ronfort.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torne-Celer, C., Moreau, K., Faure, C. et al. An improved self-deleting retroviral vector derived from avian leukemia and sarcoma virus. Arch Virol 153, 2233–2243 (2008). https://doi.org/10.1007/s00705-008-0252-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-008-0252-1

Keywords

Navigation