Skip to main content
Log in

Recombinant Listeria monocytogenes expressing an immunodominant peptide fails to protect after intravaginal challenge with herpes simplex virus-2

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Recombinant Listeria monocytogenes expressing a type-common herpes simplex virus (HSV) gB-peptide was shown previously to protect against footpad inoculation with HSV-1. We tested this construct for protection against vaginal challenge with HSV-2. Primed mice demonstrated strong recall responses, had modest reductions in HSV-2 DNA in vaginal mucosa, but were not protected from disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Blaney JJ, Nobusawa E, Brehm M, Bonneau R, Mylin L, Fu T, Kawaoka Y, Tevethia S (1998) Immunization with a single major histocompatibility complex class I-restricted cytotoxic T-lymphocyte recognition epitope of herpes simplex virus type 2 confers protective immunity. J Virol 72:9567–9574

    PubMed  CAS  Google Scholar 

  2. Bonneau R, Salvucci L, Johnson D, Tevethia S (1993) Epitope specificity of H-2 Kb-restricted, HSV-1-, and HSV-2-cross-reactive cytotoxic T lymphocyte clones. Virology 195:62–70

    Article  PubMed  CAS  Google Scholar 

  3. Corey L, Langenberg A, Ashley R, Sekulovich R, Izu A, Douglas JJ, Handsfield H, Warren T, Marr L, Tyring S, DiCarlo R, Adimora A, Leone P, Dekker C, Burke R, Leong W, Straus S (1999) Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: two randomized controlled trials. Chiron HSV Vaccine Study Group. JAMA 282:331–340

    Article  PubMed  CAS  Google Scholar 

  4. Corey L (2005) Herpes simplex virus. In: Mandell G, Bennett J, Dolin R (eds) Principles and practice of infectious diseases. Churchill Livingstone, Philadelphia

    Google Scholar 

  5. Dolan A, Jamieson F, Cunningham C, Barnett B, McGeoch D (1998) The genome sequence of herpes simplex virus type 2. J Virol 72:2010–2021

    PubMed  CAS  Google Scholar 

  6. Gallichan W, Rosenthal K (1996) Long-lived cytotoxic T lymphocyte memory in mucosal tissues after mucosal but not systemic immunization. J Exp Med 184:1879–1890

    Article  PubMed  CAS  Google Scholar 

  7. Gallichan W, Rosenthal K (1996) Effects of the estrous cycle on local humoral immune responses and protection of intranasally immunized female mice against herpes simplex virus type 2 infection in the genital tract. Virology 224:487–497

    Article  PubMed  CAS  Google Scholar 

  8. Gierynska M, Kumaraguru U, Eo S-K, Lee S, Krieg A, Rouse B (2002) Induction of CD8 T-cell-specific systemic and mucosal immunity against herpes simplex virus with CpG-peptide complexes. J Virol 76:6568–6576

    Article  PubMed  CAS  Google Scholar 

  9. Hamilton S, Badovinac V, Khanolkar A, Harty J (2006) Listeriolysin O-deficient Listeria monocytogenes as a vaccine delivery vehicle: antigen-specific CD8 T cell priming and protective immunity. J Immunol 177:4012–4020

    PubMed  CAS  Google Scholar 

  10. Khanna K, Bonneau R, Kinchington P, Hendricks R (2003) Herpes simplex virus-specific memory CD8 + T cells are selectively activated and retained in latently infected sensory ganglia. Immunity 18:593–603

    Article  PubMed  CAS  Google Scholar 

  11. Koelle D, Posavad C, Barnum G, Johnson M, Frank J, Corey L (1998) Clearance of HSV-2 from recurrent genital lesions correlates with infiltration of HSV-specific cytotoxic T lymphocytes. J Clin Invest 101:1500–1508

    Article  PubMed  CAS  Google Scholar 

  12. Koelle D, Liu Z, McClurkan C, Topp M, Riddell S, Pamer E, Johnson A, Wald A, Corey L (2002) Expression of cutaneous lymphocyte-associated antigen by CD8(+) T cells specific for a skin-tropic virus. J Clin Invest 110:537–548

    PubMed  CAS  Google Scholar 

  13. Koelle D, Corey L (2003) Recent progress in herpes simplex virus immunobiology and vaccine research. Clin Microbiol Rev 16:96–113

    Article  PubMed  CAS  Google Scholar 

  14. Koelle D, Gonzalez J, Johnson A (2005) Homing in on the cellular immune response to HSV-2 in humans. Am J Reprod Immunol 53:172–181

    Article  PubMed  CAS  Google Scholar 

  15. Kollmann T, Reikie B, Blimkie D, Way S, Hajjar A, Arispe K, Shaulov A, Wilson C (2007) Induction of protective immunity to Listeria monocytogenes in neonates. J Immunol 178:3695–3701

    PubMed  CAS  Google Scholar 

  16. Kuklin N, Daheshia M, Karem K, Manickan E, Rouse B (1997) Induction of mucosal immunity against herpes simplex virus by plasmid DNA immunization. J Virol 71:3138–3145

    PubMed  CAS  Google Scholar 

  17. Kumaraguru U, Gierynska M, Norman S, Bruce B, Rouse B (2002) Immunization with chaperone-peptide complex induces low-avidity cytotoxic T lymphocytes providing transient protection against herpes simplex virus infection. J Virol 76:136–141

    Article  PubMed  CAS  Google Scholar 

  18. Orr M, Orgun N, Wilson C, Way S (2007) Recombinant Listeria monocytogenes expressing a single immune-dominant peptide confers protective immunity to herpes simplex virus-1 infection. J Immunol 178:4731–4735

    PubMed  CAS  Google Scholar 

  19. Park SF, Stewart GS (1990) High-efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene 94:129–132

    Article  PubMed  CAS  Google Scholar 

  20. Parr E, Parr M (1997) Immunoglobulin G is the main protective antibody in mouse vaginal secretions after vaginal immunization with attenuated herpes simplex virus type 2. J Virol 71:8109–8115

    PubMed  CAS  Google Scholar 

  21. Parr M, Kepple L, McDermott M, Drew M, Bozzola J, Parr E (1994) A mouse model for studies of mucosal immunity to vaginal infection by herpes simplex virus type 2. Lab Invest 70:369–380

    PubMed  CAS  Google Scholar 

  22. Ryncarz A, Goddard J, Wald A, Huang M, Roizman B, Corey L (1999) Development of a high-throughput quantitative assay for detecting herpes simplex virus DNA in clinical samples. J Clin Microbiol 37:1941–1947

    PubMed  CAS  Google Scholar 

  23. Shiver J, Emini E (2004) Recent advances in the development of HIV-1 vaccines using replication-incompetent adenovirus vectors. Annu Rev Med 55:355–372

    Article  PubMed  CAS  Google Scholar 

  24. Stanberry L (2004) Clinical trials of prophylactic and therapeutic herpes simplex virus vaccines. Herpes 11:161A–169A

    PubMed  Google Scholar 

  25. Starks H, Bruhn K, Shen H, Barry R, Dubensky T, Brockstedt D, Hinrichs D, Higgins D, Miller J, Giedlin M, Bouwer H (2004) Listeria monocytogenes as a vaccine vector: virulence attenuation or existing antivector immunity does not diminish therapeutic efficacy. J Immunol 173:420–427

    PubMed  CAS  Google Scholar 

  26. Stock A, Jones C, Heath W, Carbone F (2006) CTL response compensation for the loss of an immunodominant class I-restricted HSV-1 determinant. Immunol Cell Biol 84:543–550

    Article  PubMed  CAS  Google Scholar 

  27. Verjans G, Hintzen R, van Dun J, Poot A, Milikan J, Laman J, Langerak A, Kinchington P, Osterhaus A (2007) Selective retention of herpes simplex virus-specific T cells in latently infected human trigeminal ganglia. Proc Natl Acad Sci USA 104:3496–3501

    Article  PubMed  CAS  Google Scholar 

  28. Wald A, Huang M, Carrell D, Selke S, Corey L (2003) Polymerase chain reaction for detection of herpes simplex virus (HSV) DNA on mucosal surfaces: comparison with HSV isolation in cell culture. J Infect Dis 188:1345–1351

    Article  PubMed  CAS  Google Scholar 

  29. Wallace M, Keating R, Heath W, Carbone F (1999) The cytotoxic T-cell response to herpes simplex virus type 1 infection of C57BL/6 mice is almost entirely directed against a single immunodominant determinant. J Virol 73:7619–7626

    PubMed  CAS  Google Scholar 

  30. Zhu J, Koelle D, Cao J, Vazquez J, Huang M, Hladik F, Wald A, Corey L (2007) Virus-specific CD8 + T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J Exp Med 204:595–603

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the following grants to SSW: NIH-K08HD51584, a Wyeth Infectious Disease Society of America award, Puget Sound Partners for Global Health, and a March of Dimes Basil O’Conner starter research award. WJM was supported by NIH grant T32 AI007411 and by a Child Health Research Career Development Award through the Department of Pediatrics, Feinberg School of Medicine, and Children’s Memorial Research Center at Northwestern University. DMK is supported in part by NIH AI50132. We thank Dr. Gregg Milligan (University of Texas Medical Branch, Galveston, TX) for HSV-2 strain 186, which was grown and titered by Chris McClurkan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Muller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muller, W.J., Orgun, N.N., Dong, L. et al. Recombinant Listeria monocytogenes expressing an immunodominant peptide fails to protect after intravaginal challenge with herpes simplex virus-2. Arch Virol 153, 1165–1169 (2008). https://doi.org/10.1007/s00705-008-0089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-008-0089-7

Keywords

Navigation