Skip to main content
Log in

Estimating river discharge from rainfall satellite data through simple statistical models

  • Research
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Quantitative knowledge of river discharge measurements is essential for understanding coastal and estuarine dynamics and salinity variations. However, direct measurements are scarce for a large portion of rivers in Brazil. In this study, five simple models based on remote sensing and local rainfall datasets (MERGE) for the Ribeira de Iguape catchment are used to estimate the Valo Grande Channel (VGC) discharge on the southeastern coast of Brazil. These models use linear, quadratic, exponential, and two different multiple linear regression methods. The predicted VGC discharge time series resulting from each model is compared with the estimated time series based on in situ data from the Water and Electric Energy Department (DAEE in Portuguese). The estimated time series presented reasonable results, with skills varying from 0.84 to 0.92 and Nash–Sutcliffe efficiency (NSE) indices varying from 0.54 to 0.75, with the highest values corresponding to the multiple linear regression models. This methodology allowed us to reproduce longer time series at a daily frequency, as well as monthly averages between 2000 and 2020.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The MERGE datasets used and analyzed during the current study are available at http://ftp.cptec.inpe.br/modelos/tempo/MERGE/GPM/DAILY. For more information about the data results for the implemented models, please contact Paula Birocchi.

References

  • Abebe NA, Ogden FL, Pradhan NR (2010) Sensitivity and uncertainty analysis of the conceptual HBV rainfall–runoff model: implications for parameter estimation. J Hydrol 389(3-4):301–310. https://doi.org/10.1016/j.jhydrol.2010.06.007

    Article  Google Scholar 

  • Afonso CM (2006) A paisagem da Baixada Santista: urbanizacao, transformacão e conservacão. Editora Universidade de São Paulo: FAPESP, São Paulo, p 310

    Google Scholar 

  • Ahani A, Shourian M, Rad PR (2018) Performance assessment of the linear, nonlinear and nonparametric data driven models in river flow forecasting. Water Resour Manage 32(2):383–399. https://doi.org/10.1007/s11269-017-1792-5

    Article  Google Scholar 

  • Allasia DG, Silva B, Collischonn W, Tucci CEM (2006) Large basin simulation experience in South America. In: Sivapalan M, Wagener T, Uhlenbrook S, Zehe E, Lakshmi V, Liang X, Tachikawa Y, Kumar P (eds) Proc. Brazil Symp., April 2005Prediction in Ungauged Basins: Promises and Progress. IAHS Publ. 303. IAHS Press, Wallingford, UK, pp 360–370

    Google Scholar 

  • Ambrosio BG (2016) Dinâmica da desembocadura lagunar de Cananéia, litoral sul do estado de São Paulo (Master dissertation). Universidade de São Paulo

    Google Scholar 

  • ANA (2008) National Water Agency. Historic Outflows From Jaguaribe River. www.hidroweb.ana.gov.br (retrieved 20.10.2008).

  • Barcellini VC, Motta FS, Martins AM, Moro PS (2013) Recreational anglers and fishing guides from an estuarine protected area in southeastern Brazil: socioeconomic characteristics and views on fisheries management. Ocean Coast Manag 76:23–29. https://doi.org/10.1016/j.ocecoaman.2013.02.012

    Article  Google Scholar 

  • Barioto JG, Stanski G, Grabowski RC, Costa RC, Castilho AL (2017) Ecological distribution of Penaeus schmitti (Dendrobranchiata: Penaeidae) juveniles and adults on the southern coast of São Paulo state Brazil. Marine Biology Research 13(6):693–703. https://doi.org/10.1080/17451000.2017.1287923

    Article  Google Scholar 

  • Barnes SL (1973) Mesoscale objective analysis using weighted time-series observations. In: NOAA Tech. Memo. ERL NSSL-62. National Severe Storms Laboratory, Norman, OK, p 60

    Google Scholar 

  • Belvederesi C, Dominic JA, Hassan QK, Gupta A, Achari G (2020) Short-term river flow forecasting framework and its application in cold climatic regions. Water 12(11):3049. https://doi.org/10.3390/w12113049

    Article  Google Scholar 

  • Bérgamo AL (2000) Características da hidrografia, circulação e transporte de sal: Barra de Cananéia, Sul do mar de Cananéia e Baía do Trapandé (Doctoral dissertation. Universidade de São Paulo

    Google Scholar 

  • Bergström S (1976) Development and application of a conceptual runoff model for Scandinavian Catchments. Report RHO 7, Swedish Meteorological and Hydrological Institute, Norrkoping, Sweden, 134

    Google Scholar 

  • Bochini GL, Stanski G, Castilho AL, da Costa RC (2019) The crustacean bycatch of seabob shrimp Xiphopenaeus kroyeri (Heller, 1862) fisheries in the Cananéia region, southern coast of São Paulo, Brazil. Reg Stud Mar Sci 31:100799. https://doi.org/10.1016/j.rsma.2019.100799

    Article  Google Scholar 

  • Carvalho OJ, Aguiar W, Cirano M, Genz F, Amorim FND (2018) A climatology of the annual cycle of river discharges into the Brazilian continental shelves: from seasonal to interannual variability. Environ Earth Sci 77:192. https://doi.org/10.1007/s12665-018-7349-y

    Article  Google Scholar 

  • CBH-RB (Comitê da Bacia Hidrográfica do Ribeira de Iguape e Litoral Sul) (2008) Plano Diretor de Recursos Hídricos da Unidade de Gerenciamento N° 11: Bacia Hidrográfica do Ribeira de Iguape e Litoral Sul. Fundespa e Fundo Estadual de Recursos Hidrícos https://sigrh.sp.gov.br/public/uploads/documents/7082/plano_bacia_ugrhi-11_2008-2011.pdf.  Accesse 1 Oct 2022

  • Chen SM, Wang YM, Tsou I (2013) Using artificial neural network approach for modelling rainfall–runoff due to typhoon. J Earth Syst Sci 122:399–405. https://doi.org/10.1007/s12040-013-0289-8

    Article  Google Scholar 

  • Cigizoglu HK, Alp M (2004) Rainfall-runoff modelling using three neural network methods. In: Rutkowski L, Siekmann JH, Tadeusiewicz R, Zadeh LA (eds) Artificial Intelligence and Soft Computing - ICAISC 2004. ICAISC 2004, Lecture Notes in Computer Science(), vol 3070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24844-6_20

    Chapter  Google Scholar 

  • Coleman JM, Wright LD (1971) Analysis of major rivers and their deltas: procedures and rationale, with two examples. Louisiana State University Press, Baton Rouge, p 125

    Google Scholar 

  • Collischonn W, Allasia D, Da Silva BC, Tucci CE (2007) The MGB-IPH model for large-scale rainfall—runoff modelling. Hydrol Sci J 52(5):878–895. https://doi.org/10.1623/hysj.52.5.878

    Article  Google Scholar 

  • Curcho MRSM, Farias LA, Baggio SR, Fonseca BC, Nascimento SMD, Bortoli MC, Braga ES, Fávaro DIT (2009) Mercury and methylmercury content, fatty acids profile, and proximate composition of consumed fish in Cananéia, São Paulo, Brazil. Rev Inst Adolfo Lutz 68(3):442–450

    Google Scholar 

  • DAEE (Departamento Estadual de Águas e Energia Elétrica) (1998) Bacia Hidrográfica do Ribeira do Iguape - Plano de Ação Para o Controle das Inundações e Diretrizes Para o Desenvolvimento do Vale, p 68

    Google Scholar 

  • Dariane AB, Azimi S (2018) Streamflow forecasting by combining neural networks and fuzzy models using advanced methods of input variable selection. J Hydroinformatics 20(2):520–532. https://doi.org/10.2166/hydro.2017.076

    Article  Google Scholar 

  • Dar LA (2017) Rainfall-runoff modeling using multiple linear regression technique. International Journal for Research in Applied Sciences, Engineering and Technology, 5(7), 214-218.

  • Devia GK, Ganasri BP, Dwarakish GS (2015) A review on hydrological models. Aquatic Procedia 4:1001–1007. https://doi.org/10.1016/j.aqpro.2015.02.126

    Article  Google Scholar 

  • Dias FDS, Castro BM, Lacerda LDD (2013) Continental shelf water masses off the Jaguaribe River (4S), northeastern Brazil. Cont Shelf Res 66:123–135. https://doi.org/10.1016/j.csr.2013.06.005

    Article  Google Scholar 

  • Dwarakish GS, Ganasri BP (2015) Impact of land use change on hydrological systems: a review of current modeling approaches. Cogent Geoscience 1(1):1115691. https://doi.org/10.1080/23312041.2015.1115691

    Article  Google Scholar 

  • Faurès JM, Goodrich DC, Woolhiser DA, Sorooshian S (1995) Impact of small-scale spatial rainfall variability on runoff modeling. J Hydrol 173(1-4):309–326. https://doi.org/10.1016/0022-1694(95)02704-S

    Article  Google Scholar 

  • Filla GDF, Oliveira CIBD, Gonçalves JM, Monteiro-Filho ELDA (2012) The economic evaluation of estuarine dolphin (Sotalia guianensis) watching tourism in the Cananéia region, south-eastern Brazil. Int J Green Econ 6(1):95–116

    Article  Google Scholar 

  • Galvão MSN, Pereira OM, Machado IC, Heriques MB (2000) Reproductive characters of the oyster Crassostrea brasiliana from mangroves of Cananéia estuary, São Paulo, Brazil. Bol Inst Pesca 26:147–162 ISSN: 0046-9939

    Google Scholar 

  • Geise L, Gomes N, Cerqueira R (1999) Behaviour, habitat use and population size of Sotalia fluviatilis (Gervais, 1853) (Cetacea, Delphinidae) in the Cananéia estuary region, São Paulo, Brazil. Rev Bras Biol 59(2):183–194. https://doi.org/10.1590/S0034-71081999000200002

    Article  Google Scholar 

  • GEOBRÁS (GEOBRÁS S/A - Engenharia e Fundações) (1966) Complexo VaIo Grande- Mar Pequeno - Rio Ribeira de Iguape. Relatório para o serviço do Vale do Ribeira. São Paulo, DAEE. 2 v

    Google Scholar 

  • IBAMA (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis) (2016) Indeferimento do pedido de licença prévia para a UHE Tijuco Alto. Ministério do Meio Ambiente https://site-antigo.socioambiental.org/sites/blog.socioambiental.org/files/nsa/arquivos/document.pdf.  Accessed 15 Sept 2022

  • Jiang R, Woli KP, Kuramochi K, Hayakawa A, Shimizu M, Hatano R (2012) Coupled control of land use and topography on nitrate-nitrogen dynamics in three adjacent watersheds. Catena 97:1–11. https://doi.org/10.1016/j.catena.2012.04.015

    Article  Google Scholar 

  • Kim SJ, Kwon HJ, Jung IK, Park GA (2003) A comparative study on grid-based storm runoff prediction using Thiessen and spatially distributed rainfall. Paddy Water Environ 1:149–155. https://doi.org/10.1007/s10333-003-0023-2

    Article  Google Scholar 

  • Kokkonen T, Koivusalo H, Karvonen T (2001) A semi-distributed approach to rainfall-runoff modelling—a case study in a snow affected catchment. Environ Model Software 16(5):481–493. https://doi.org/10.1016/S1364-8152(01)00028-7

    Article  Google Scholar 

  • Kratzert F, Klotz D, Brenner C, Schulz K, Herrnegger M (2018) Rainfall–runoff modelling using long short-term memory (LSTM) networks. Hydrol Earth Syst Sci 22(11):6005–6022. https://doi.org/10.5194/hess-22-6005-2018

    Article  Google Scholar 

  • Lindström G (1997) A simple automatic calibration routine for the HBV model. Nordic Hydrology 28:153–168. https://doi.org/10.2166/nh.1997.0009

    Article  Google Scholar 

  • Lindström G, Gardelin M, Johansson B, Persson M, Bergström S (1997) Development and test of the distributed HBV-96 hydrological model. J Hydrol 201:272–288. https://doi.org/10.1016/S0022-1694(97)00041-3

    Article  Google Scholar 

  • Lohani AK, Goel NK, Bhatia KKS (2014) Improving real time flood forecasting using fuzzy inference system. J Hydrol 509:25–41. https://doi.org/10.1016/j.jhydrol.2013.11.021

    Article  Google Scholar 

  • Ma HY, Mechoso CR, Xue Y, Xiao H, Wu CM, Li JL, De Sales F (2011) Impact of land surface processes on the South American warm season climate. Climate Dynam 37(1):187–203. https://doi.org/10.1007/s00382-010-0813-3

    Article  Google Scholar 

  • McAleer T (2020) Interpreting linear regression through statsmodels .summary(). Available at: https://medium.com/swlh/interpreting-linear-regression-through-statsmodels-summary-4796d359035a. Accessed 10 Oct 2021

  • Miranda LB, Castro BM, Kjerfve B (2012) Princípios de Oceanografia Física de Estuários, second edn. Universidade de São Paulo (USP), São Paulo, SP, Brazil

    Google Scholar 

  • Marta-Almeida M, Dalbosco A, Franco D, Ruiz-Villarreal M (2021) Dynamics of river plumes in the South Brazilian Bight and South Brazil. Ocean Dynamics 71(1):59–80. https://doi.org/10.1007/s10236-020-01397-x

    Article  Google Scholar 

  • Melesse AM, Graham WD, Jordan JD (2003) Spatially distributed watershed mapping and modeling: GIS-based storm runoff response and hydrograph analysis: Part 2. J Spat Hydrol 3(2):1–28

    Google Scholar 

  • Melesse AM, Graham WD (2004) Storm runoff prediction based on a spatially distributed travel time method utilizing remote sensing and GIS 1. Am J Water Resour 40(4):863–879. https://doi.org/10.1111/j.1752-1688.2004.tb01051.x

    Article  Google Scholar 

  • Moraes RP (1997) Transporte de chumbo e metais associados no Rio Ribeira de Iguape, São Paulo, Brasil. Masters Dissertation. Instituto de Geociências, Universidade Estadual de Campinas, Campinas, p 94

    Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50(3):885–900. https://doi.org/10.13031/2013.23153

    Article  Google Scholar 

  • Moore RJ (2007) The PDM rainfall–runoff model. Hydrol Earth Syst Sci 11(1):483–499. https://doi.org/10.5194/hess-11-483-2007

    Article  Google Scholar 

  • Muñoz-Villers LE, McDonnell JJ (2013) Land use change effects on runoff generation in a humid tropical montane cloud forest region. Hydrol Earth Syst Sci 17:3543–3560. https://doi.org/10.5194/hess-17-3543-2013

    Article  Google Scholar 

  • Najafi MR, Moradkhani H (2016) Ensemble combination of seasonal streamflow forecasts. J Hydrol Eng 21(1):04015043. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001250

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10(3):282–290. https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Newman AJ, Clark MP, Sampson K, Wood A, Hay LE, Bock A et al (2015) Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance. Hydrol Earth Syst Sci 19(1):209–223. https://doi.org/10.5194/hess-19-209-2015

    Article  Google Scholar 

  • Oliveira J, Braga ES, Jesus SC, Abrahao FF, Santos GF, Chiozzini V (2009) Assessment of natural radium isotopes and sup (222) Rn in water samples from Cananeia-Iguape estuarine complex, Sao Paulo. In: International nuclear atlantic conference; meeting on nuclear applications, 9th; meeting on reactor physics and thermal hydraulics, 16th; meeting on nuclear industry, 1st, September 27 - October 2, 2009, Rio de Janeiro, RJ. Proceedings... Sao Paulo: ABEN, 2009, 2009. Available at: http://repositorio.ipen.br/handle/123456789/12324. Accessed in: 11-05-2022.

  • Patel S, Hardaha MK, Seetpal MK, Madankar KK (2016) Multiple linear regression model for stream flow estimation of Wainganga River. Am J Sci Eng 2(1):1–5. https://doi.org/10.11648/j.ajwse.20160201.11

    Article  Google Scholar 

  • Partal T (2017) Wavelet regression and wavelet neural network models for forecasting monthly streamflow. J Water Clim Chang 8(1):48–61. https://doi.org/10.2166/wcc.2016.091

    Article  Google Scholar 

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: Machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  • Perlman H (2016) The water cycle- USGS Water Science School. https://water.usgs.gov/edu/watercycle.html. Accessed 13 Jul 2022

  • Pisetta M (2006) Transporte de sedimentos por suspensão no sistema estuarino-lagunar de Cananéia-lguape (SP). Master in Chemical and Geological Oceanography - Instituto Oceanográfico, Universidade de São Paulo (IO–USP), São Paulo, p 179 (Master dissertation

    Google Scholar 

  • Pisetta M (2010) Análise do processo de distribuição do material particulado emsuspensão e metais associados no sistema Cananéia-Iguape (SP). Instituto Oceanográfico, Universidade de São Paulo, p 175 PhD Thesis

    Google Scholar 

  • Rosa DWB, Nascimento NO, Moura PM, Macedo GD (2020) Assessment of the hydrological response of an urban watershed to rainfall-runoff events in different land use scenarios – Belo Horizonte, MG, Brazil. Water Sci Technol 81(4):679–693. https://doi.org/10.2166/wst.2020.148

    Article  Google Scholar 

  • Rossman LA (2010) Storm water management model user's manual, version 5.0. National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Cincinnati, p 276

    Google Scholar 

  • Rozante JR, Moreira DS, Gonçalves LGG, Vila DA (2010) Combining TRMM and surface observations of precipitation: technique and validation over South America. Weather and Forecasting 25:885–894. https://doi.org/10.1175/2010WAF2222325.1

    Article  Google Scholar 

  • Sahoo BB, Jha R, Singh A, Kumar D (2019) Application of support vector regression for modeling low flow time series. KSCE J Civ Eng 23:923–934. https://doi.org/10.1007/s12205-018-0128-1

    Article  Google Scholar 

  • Sarkar A, Kumar R (2012) Artificial neural networks for event based rainfall-runoff modeling. J Water Resource Prot 4(10):891. https://doi.org/10.4236/jwarp.2012.410105

    Article  Google Scholar 

  • Santos MDO, Rosso S (2007) Ecological aspects of marine tucuxi dolphins (Sotalia guianensis) based on group size and composition in the Cananéia estuary, southeastern Brazil. Lat Am J Aquat Ma:71–82. https://doi.org/10.5597/lajam00110

  • Satyamurti P, Nobre C, Dias PLS (1998) South America. In: Karoly DJ, Vicent DJ (eds) Meteorology of the Southern Hemisphere. American Meteorological Society, Boston, pp 119–139

    Chapter  Google Scholar 

  • Sayama T, McDonnell JJ, Dhakal A, Sullivan K (2011) How much water can a watershed store? Hydrol Process 25:3899–3908. https://doi.org/10.1002/hyp.8288

    Article  Google Scholar 

  • Seabold S, Perktold J (2010) Statsmodels: econometric and statistical modeling with python. Proceedings of the 9th Python in Science Conference 57(61):10–25080

    Google Scholar 

  • Sichangi AW, Wang L, Hu Z (2018) Estimation of river discharge solely from remote-sensing derived data: an initial study over the Yangtze river. Remote Sens (Basel) 10(9):1385. https://doi.org/10.3390/rs10091385

    Article  Google Scholar 

  • Sitterson J, Knightes C, Parmar R, Wolfe K, Avant B, Muche M (2018) An overview of rainfall-runoff model types. 9th International Congress on Environmental Modelling and Software. https://scholarsarchive.byu.edu/iemssconference. Accessed 22 Aug 2022

  • Shoaib M, Shamseldin AY, Khan S, Khan MM, Khan ZM, Sultan T, Melville BW (2018) A comparative study of various hybrid wavelet feedforward neural network models for runoff forecasting. Water resources management 32(1):83–103. https://doi.org/10.1007/s11269-017-1796-1

    Article  Google Scholar 

  • Stanski G, Carvalho MM, Garcia JR, Goncalves GR, Costa RC, Castilho AL (2018) Geographical variation and local environment effects in the reproductive output and fecundity of the shrimp Exhippolysmata oplophoroides (Decapoda: Caridea) in southeastern Brazil. Invertebrate Reproduction & Development 62(2):119–124. https://doi.org/10.1080/07924259.2018.1448305

    Article  Google Scholar 

  • Stech JL, Lorenzzetti JA (1992) The response of the South Brazil Bight to the passage of wintertime cold fronts. J Geophys Res Oceans 97(C6):9507–9520. https://doi.org/10.1029/92JC00486

    Article  Google Scholar 

  • Turhan E (2021) A comparative evaluation of the use of artificial neural networks for modeling the rainfall-runoff relationship in water resources Management. Journal of Ecological Engineering 22(5). https://doi.org/10.12911/22998993/135775

  • Vano JA, Lettenmaier DP (2014) A sensitivity-based approach to evaluating future changes in Colorado River discharge. Clim Change 122:621–634. https://doi.org/10.1007/s10584-013-1023-x

    Article  Google Scholar 

  • Wang C, Shang S, Jia D, Han Y, Sauvage S, Sánchez-Pérez JM, Kuramochi K, Hatano R (2018) Integrated effects of land use and topography on streamflow response to precipitation in an agriculture-forest dominated northern watershed. Water 10(5):633. https://doi.org/10.3390/w10050633

    Article  Google Scholar 

  • Willmott CJ (1981) On the validation of models. Physical geography 2(2):184–194. https://doi.org/10.1080/02723646.1981.10642213

    Article  Google Scholar 

  • Wood EF, Roundy JK, Troy TJ, van Beek LPH, Bierkens MFP, Blyth E, de Roo A, Döll P, Ek M, Famiglietti J, Gochis D, van de Giesen N, Houser P, Jaffé PR, Kollet S, Lehner B, Lettenmaier DP, Peters-Lidard C, Sivapalan M et al (2011) Hyperresolution global land surface modeling: meeting a grand challenge for monitoring Earth's terrestrial water. Water Resour Res 47:W05301. https://doi.org/10.1029/2010WR010090

    Article  Google Scholar 

  • Xiang Z, Yan J, Demir I (2020) A rainfall-runoff model with LSTM-based sequence-to-sequence learning. Water Resour Res 56(1). https://doi.org/10.1029/2019WR025326

  • Zhang R, Cuartas LA, Carvalho LVC, Leal KRD, Mendiondo EM, Abe N, Birkinshaw S, Mohor SG, Seluchi ME, Nobre CA (2018) Season-based rainfall–runoff modelling using the probability-distributed model (PDM) for large basins in southeastern Brazil. Hydrol Process 32(14):2217–2230. https://doi.org/10.1002/hyp.13154

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the CPTEC/INPE for providing the MERGE dataset, downloaded through the FTP server at http://ftp.cptec.inpe.br/modelos/tempo/MERGE/GPM/DAILY. We also thank the CNPQ (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for providing the PhD scholarship for Paula Birocchi during the development of this study and Ligia Dias Araujo for helping to create Fig. 1.

Code availability

The Python codes used here can be requested via email to paula.birocchi@usp.br.

Funding

Author Paula Birocchi has received a PhD scholarship from CNPQ (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception, design, and investigation. The methodology was chosen and the formal analysis was made by Paula Birocchi, Danilo Augusto Silva, and Dalton Kei Sasaki. The software usage and validation were made by Paula Birocchi. The visual elements of the paper were made by Paula Birocchi and Dalton Kei Sasaki. The first draft of the manuscript was written by Paula Birocchi and all authors commented on previous versions of the manuscript. All authors contributed to writing, reviewing, and editing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paula Birocchi.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

The authors Paula Birocchi, Danilo Augusto Silva, Dalton Kei Sasaki, and Marcelo Dottori consent to participate in this article.

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 3488 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birocchi, P., Silva, D.A., Sasaki, D.K. et al. Estimating river discharge from rainfall satellite data through simple statistical models. Theor Appl Climatol 153, 241–261 (2023). https://doi.org/10.1007/s00704-023-04459-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-023-04459-4

Navigation