Skip to main content

Advertisement

Log in

Estimation of solar radiation by joint application of phase space reconstruction and a hybrid neural network model

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract 

Estimation of solar radiation can play a key role in environmental management as well as other fields of energy, agriculture, and hydrological and ecological modeling. In some areas, there are not enough solar radiation data due to a lack of pyranometer or its breakdown from time to time. Hence, having an estimation set at hand to estimate solar radiation based on other climatic variables is crucial. In order to develop an estimation tool, two models are applied simultaneously as a new hybrid model for estimation of monthly global solar radiation for three regions in Iran as case studies of this research work: (1): an artificial neural network (ANN) optimized with Harris hawk’s optimization (HHO) algorithm (ANNHHO) and (2) phase space reconstruction (PSR) integrated with the ANNHHO hybrid model (PSR-ANNHHO). Monthly meteorological data of minimum temperature (Tmin), maximum temperature (Tmax), mean temperature (Tmean), sunshine hours (SH), wind speed (U2), and relative humidity (RH) of 37 years (1985–2018) from three regions in Iran with different climate types were employed for training and testing the developed models. To select appropriate input variables for the models, a relief algorithm was applied. The performance of the new hybrid models is compared with the stand-alone ANN model. The obtained results revealed that although all the intelligent models perform satisfactorily, the hybrid PSR-ANNHHO model outperforms the hybrid ANNHHO and stand-alone ANN models in all regions. The hybrid ANN-HHO model follows the PSR-ANNHHO model as the second most accurate model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets used in this study, were compiled and supplied by the Meteorology Organization in Iran. They are available from the corresponding author on reasonable request.

Code availability

The code generated in this study is available from the corresponding author on reasonable request.

References

  • Abarbanel HDI (1996) Choosing the dimension of reconstructed phase space. In: Analysis of observed chaotic data. Institute for nonlinear science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0763-4_4

  • Al-Alawi SM, Al-Hinai HA (1998) An ANN-based approach for predicting global radiation in locations with no direct measurement instrumentation. Renew Energy 14(1–4):199–204

    Article  Google Scholar 

  • Almaraashi M (2018) Investigating the impact of feature selection on the prediction of solar radiation in different locations in Saudi Arabia. Appl Soft Comput 66:250–263

    Article  Google Scholar 

  • Basaran K, Özçift A, Kılınç D (2019) A new approach for prediction of solar radiation with using ensemble learning algorithm. Arab J Sci Eng. https://doi.org/10.1007/s13369-019-03841-7

    Article  Google Scholar 

  • Baydaroǧlu Ö, Koçak K (2014) SVR-based prediction of evaporation combined with chaotic approach. J Hydrol 508:356–363. https://doi.org/10.1016/j.jhydrol.2013.11.008

    Article  Google Scholar 

  • Behrang MA, Assareh E, Ghanbarzadeh A, Noghrehabadi AR (2010) The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Sol Energy 84(8):1468–1480

    Article  Google Scholar 

  • Benghanem M, Mellit A, Alamri SN (2009) ANN-based modelling and estimation of daily global solar radiation data: A case study. Energy Convers Manage 50(7):1644–1655

    Article  Google Scholar 

  • Casdagli M (1989) Nonlinear prediction of chaotic time series. Phys D Nonlin Phenom 35:335–356

    Article  Google Scholar 

  • Dhanya CT, Kumar DN (2010) Nonlinear ensemble prediction of chaotic daily rainfall. Adv Water Resour 33:327–347

    Article  Google Scholar 

  • Dhanya CT, Kumar DN (2011) Multivariate nonlinear ensemble prediction of daily chaotic rainfall with climate inputs. J Hydrol 403:292–306

    Article  Google Scholar 

  • Elshorbagy A, Simonovic SP, Panu US (2002) Estimation of missing streamflow data using principles of chaos theory. J Hydrol 255:123–133. https://doi.org/10.1016/S0022-1694(01)00513-3

    Article  Google Scholar 

  • Farmer JD, Sidorowich JJ (1987) Predicting chaotic time series. Phys Rev Lett 59:845

    Article  Google Scholar 

  • Fraser AM, Swinney HL (1986) Independent coordinates for strange attractors from mutual information. Phys Rev A 33:1134–1140. https://doi.org/10.1103/PhysRevA.33.1134

    Article  Google Scholar 

  • Fathima TA, Nedumpozhimana V, Lee YH, Winkler S, Dev S (2019) A chaotic approach on solar irradiance forecasting. Photonics & Electromagnetics Research Symposium - fall (PIERS - Fall), Xiamen, China 2724–2728, https://doi.org/10.1109/PIERS-Fall48861.2019.9021305

  • Gaume E, Sivakumar B, Kolasinski M, Hazoumé L (2006) Identification of chaos in rainfall temporal disaggregation: application of the correlation dimension method to 5-minute point rainfall series measured with a tipping bucket and an optical raingage. J Hydrol 328:56–64

    Article  Google Scholar 

  • Ghorbani MA, Khatibi R, Mehr AD, Asadi H (2018) Chaos-based multigene genetic programming: a new hybrid strategy for river flow forecasting. J Hydrol 562:455–467

    Article  Google Scholar 

  • Golder J, Joelson M, Neel MC, Di Pietro L (2014) A time fractional model to represent rainfall process. Water Sci Eng 7:32–40

    Google Scholar 

  • Guermoui M, Gairaa K, Boland J, Arrif T (2021) A novel hybrid model for solar radiation forecasting using support vector machine and bee colony optimization algorithm: review and case study. J Solar Energy Eng 143(2):020801

    Article  Google Scholar 

  • Halabi LM, Mekhilef S, Hossain M (2018) Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation. Appl Energy 213:247–261. https://doi.org/10.1016/j.apenergy.2018.01.035

    Article  Google Scholar 

  • Haykin S (2009) Neural Networks and Learning Machines, 3rd edn. McMaster University, Canada

    Google Scholar 

  • Heidari AA, Mirjalili S, Farisetal H (2019) Harris hawks’ optimization: algorithm and applications. Future Gener Comput Syst. https://doi.org/10.1016/j.future.2019.02

    Article  Google Scholar 

  • Holzfuss J, Mayer-Kress G (1986) An approach to error-estimation in the application of dimension algorithms, in: Dimensions and Entropies in Chaotic Systems. Springer, 114–122

  • Huang SC, Chuang PJ, Wu CF, Lai HJ (2010) Chaos-based support vector regressions for exchange rate forecasting. Expert Syst Appl 37:8590–8598

    Article  Google Scholar 

  • Ibrahim IA, Khatib T (2017) A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm. Energy Convers Manage 138:413–425. https://doi.org/10.1016/j.enconman.2017.02.006

    Article  Google Scholar 

  • Jadidi A, Menezes R, de Souza N, de Castro LA (2018) A hybrid GA–MLPNN model for one-hour-ahead forecasting of the global horizontal irradiance in Elizabeth city, North Carolina. Energies 11(10):2641. https://doi.org/10.3390/en11102641

    Article  Google Scholar 

  • Kalogirou SA (2001) Artificial neural networks in renewable energy systems applications: A review. Renew Sust Energ Rev 5(4):373–401

    Article  Google Scholar 

  • Kashani MH, Ghorbani MA, Shahabi M, Naganna SR, Diop L (2020) Multiple AI model integration strategy - application to saturated hydraulic conductivity prediction from easily available soil properties. Soil Tillage Res 196:104449

    Article  Google Scholar 

  • Kennel MB, Brown R, Abarbanel HDI (1992) Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A 45:3403–3411. https://doi.org/10.1103/PhysRevA.45.3403

    Article  Google Scholar 

  • Khatibi R, Sivakumar B, Ghorbani MA, Kisi O, Koçak K, Farsadi Zadeh D (2012) Investigating chaos in river stage and discharge time series. J Hydrol 414–415:108–117. https://doi.org/10.1016/j.jhydrol.2011.10.026

    Article  Google Scholar 

  • Kira K, Rendell LA (1992) The feature selection problem: traditional methods and a new algorithm. AAAI-92 Proceedings of the tenth national conference on Artificial intelligence, 129–134

  • Koca A, Oztop HF, Varol Y, Koca GO (2011) Estimation of solar radiation using artificial neural networks with different input parameters for Mediterranean region of Anatolia in Turkey. Expert Syst Appl 38(7):8756–8762

    Article  Google Scholar 

  • Koçak K, Şaylan L, Eitzinger J (2004) Nonlinear prediction of near-surface temperature via univariate and multivariate time series embedding. Ecol Modell 173:1–7. https://doi.org/10.1016/S0304-3800(03)00249-7

    Article  Google Scholar 

  • Koutsoyiannis D, Pachakis D (1996) Deterministic chaos versus stochasticity in analysis and modeling of point rainfall series. J Geophys Res Atmos 101:26441–26451

    Article  Google Scholar 

  • Liebert W, Schuster HG (1989) Proper choice of the time delay for the analysis of chaotic time series. Phys Lett A 142:107–111

    Article  Google Scholar 

  • Lovejoy S, Mandelbrot BB (1985) Fractal properties of rain, and a fractal model. Tellus A 37:209–232

    Article  Google Scholar 

  • Malik A, Kumar A, Kim S, Kashani MH, Karimi V, Ghorbani MA, Al-Ansari N, Salih SQ, Yaseen ZM, Chau KW (2020) Modeling monthly pan evaporation process over the Indian central Himalayas: application of multiple learning artificial intelligence models. Eng Appl Comput Fluid Mech 14(1):323–338

    Google Scholar 

  • McClelland JL, Rumelhart DE (1989) Explorations in parallel distributed processing: A handbook of models, programs, and exercises. MIT Press, Cambridge MA

    Google Scholar 

  • Mellit A (2008) Artificial Intelligence technique for modeling and forecasting of solar radiation data: A review. J Artif Intell Soft Comput Res 1(1):52–76

    Article  Google Scholar 

  • Moghaddamnia A, Remesan R, Kashani MH, Mohammadi M, Han D, Piri J (2009) Comparison of LLR, MLP, Elman, NNARX and ANFIS Models—with a case study in solar radiation estimation. J Atmos Solar-Terres Physics 71(8–9):975–982

    Article  Google Scholar 

  • Mohammadi K, Shamshirband S, Danesh AS, Zamani M, Sudheer C (2015) Horizontal global solar radiation estimation using hybrid SVM-firefly and SVM-wavelet algorithms: a case study. Natural Hazardshttps://doi.org/10.1007/s11069-015-2047-5

  • Mohanty S (2014) ANFIS based prediction of monthly average global solar radiation over Bhubaneswar (State of Odisha). Int J Ethics Eng Manage Edu 1(5):2348–4748

    Google Scholar 

  • Mohanty S, Patra PK, Sahoo SS (2016) Prediction and application of solar radiation with soft computing over traditional and conventional approach—a comprehensive review. Renewable Sustain Energy Rev 56:778–796

    Article  Google Scholar 

  • Moreno A, Gilabert MA, Martı´nez B (2011) Mapping daily global solar irradiation over Spain: A comparative studyof selected approaches. Sol Energy 85(9):2072–2084

    Article  Google Scholar 

  • Ng WW, Panu US, Lennox WC (2007) Chaos based analytical techniques for daily extreme hydrological observations. J Hydrol 342:17–41. https://doi.org/10.1016/j.jhydrol.2007.04.023

    Article  Google Scholar 

  • Nourani V, Elkiran G, Abdullahi J, Tahsin A (2019) Multi-region modeling of daily global solar radiation with artificial intelligence ensemble. Natural Resour Res. https://doi.org/10.1007/s11053-018-09450-9

    Article  Google Scholar 

  • Olsson J, Niemczynowicz J, Berndtsson R (1993) Fractal analysis of high-resolution rainfall time series. J Geophys Res Atmos 98:23265–23274

    Article  Google Scholar 

  • Pasternack GB (1999) Does the river run wild? Assessing chaos in hydrological systems. Adv Water Resour 23:253–260

    Article  Google Scholar 

  • Porporato A, Ridolfi L (1996) Clues to the existence of deterministic chaos in river flow. Int J Mod Phys B 10:1821–1862

    Article  Google Scholar 

  • Porporato A, Ridolfi L (1997) Nonlinear analysis of river flow time sequences. Water Resour Res 33:1353–1367. https://doi.org/10.1029/96WR03535

    Article  Google Scholar 

  • Rahimikhoob A (2010) Estimating global solar radiation using artificial neural network and air temperature data in a semiarid environment. Renewable Energy 35(9):2131–2135

    Article  Google Scholar 

  • Rehman S, Mohandes M (2008) Artificial neural network estimation of global solar radiation using air temperature and relative humidity. Energy Policy 36(2):571–576

    Article  Google Scholar 

  • Rodriguez-Iturbe I, Febres De Power B, Sharifi MB, Georgakakos KP (1989) Chaos in rainfall. Water Resour Res 25:1667–1675

    Article  Google Scholar 

  • Rohani A, Taki M, Abdollahpour M (2018) A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I). Renew Energy 115:411–422

    Article  Google Scholar 

  • Sammen SS, Ghorbani MA, Malik A, Tikhamarine Y, AmirRahmani M, Al-Ansari N, Chau KW (2020) Enhanced artificial neural network with harris hawks optimization for predicting scour depth downstream of ski-jump spillway. Appl Sci 10(15):5160

    Article  Google Scholar 

  • Shang P, Na X, Kamae S (2009) Chaotic analysis of time series in the sediment transport phenomenon. Chaos Soli Fractals 41:368–379

    Article  Google Scholar 

  • Sharifi SS, Rezaverdinejad V, Nourani V (2016) Estimation of daily global solar radiation using wavelet regression, ANN, GEP and empirical models: a comparative study of selected temperature-based approaches. J Atmos Solar-Terres. Physics. https://doi.org/10.1016/j.jastp.2016.10.008

    Article  Google Scholar 

  • Sivakumar B, Liong SY, Liaw CY (1998) Evidence of chaotic behavior in Singapore rainfall. J Am Water Resour Assoc 34:301–310

    Article  Google Scholar 

  • Sivakumar B, Liong SY, Liaw CY, Phoon KK (1999) Singapore rainfall behavior: chaotic? J Hydrol Eng 4:38–48

    Article  Google Scholar 

  • Sivakumar B (2000) Chaos theory in hydrology: important issues and interpretations. J Hydrol 227:1–20

    Article  Google Scholar 

  • Sivakumar B (2001) Rainfall dynamics at different temporal scales: a chaotic perspective. Hydrol Earth Syst Sci Discuss 5:645–652

    Article  Google Scholar 

  • Sivakumar B, Jayawardena AW (2002) An investigation of the presence of low-dimensional chaotic behaviour inthe sediment transport phenomenon. Hydrol Sci J 47:405–416. https://doi.org/10.1080/02626660209492943

    Article  Google Scholar 

  • Sun Y, Babovic V, Chan ES (2010) Multi-step-ahead model error prediction using time-delay neural networks combined with chaos theory. J Hydrol 395:109–116. https://doi.org/10.1016/j.jhydrol.2010.10.020

    Article  Google Scholar 

  • Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young L-S (eds) Dynamical systems and turbulence, Warwick, 1980: Proceedings of a Symposium Held at the University of Warwick 1979/80. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 366–381

    Chapter  Google Scholar 

  • Urbanowicz RJ, Meeker M, Cava WL, Olson RS, Moore JH (2018) Relief-based feature selection: Introduction and review. J Biomed Inform 85:189–203. https://doi.org/10.1016/j.jbi.2018.07.014

    Article  Google Scholar 

  • Uyumaz A, Danandeh Mehr A, Kahya E, Erdem H (2014) Rectangular side weirs discharge coefficient estimation in circular channels using linear genetic programming approach. J Hydroinform 16:1318–1330. https://doi.org/10.2166/hydro.2014.112

    Article  Google Scholar 

  • Wang Q, Gan TY (1998) Biases of correlation dimension estimates of streamflow data in the Canadian prairies. Water Resour Res 34:2329–2339

    Article  Google Scholar 

  • Yacef R, Mellit A, Belaid S, Şen Z (2014) New combined models for estimating daily global solar radiation from measured air temperature in semi-arid climates: application in Ghardaïa, Algeria. Energy Convers Manag 79:606–615. https://doi.org/10.1016/j.enconman.2013.12.057

    Article  Google Scholar 

  • Yadav AK, Chandel SS (2014) Solar radiation prediction using artificial neural network techniques: A review. Renew Sust Energ Rev 33:772–781

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and the unknown reviewers for improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Writing-review and editing: Mahsa H. Kashani.

Formal analysis and investigation: Samed Inyurt.

Data collection and data analysis, Methodology: Mohammad Reza Golabi.

Methodology: Mohammad AmirRahmani.

Methodology and Revising manuscript: Shahab S. Band.

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mahsa H. Kashani.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest/Competing interests (include appropriate disclosures)

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashani, M.H., Inyurt, S., Golabi, M.R. et al. Estimation of solar radiation by joint application of phase space reconstruction and a hybrid neural network model. Theor Appl Climatol 147, 1725–1742 (2022). https://doi.org/10.1007/s00704-021-03913-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-021-03913-5

Navigation