Skip to main content
Log in

Global models for 222Rn and CO2 concentrations in the Cave of Altamira

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The purpose of this paper is to model numerically the dynamics of CO2 and 222Rn in cave atmospheres, particularly in the noteworthy Cave of Altamira (Spain). We aim to get a better understanding of the nature of these dynamics and their couplings with climatic controls, more specifically the soil water content, which role in the said dynamics poses some questions. For the first time, we apply the global modeling technique in the field of cave microclimate and atmospheric composition. The global modeling technique is a methodology based on the theory of nonlinear systems and designed to extract mathematical models directly from observational time series. We were able to extract four global models from our data. These models represent a step forward from the existent conceptual ones. They also show that CO2 and 222Rn dynamics can be approximated by low-dimensional, deterministic systems, which can be chaotic or, at least, close to chaos; this has decisive methodological consequences for future research. Moreover, the global modeling technique was used for the first time in a non-autonomous formulation; this enabled the possibility of studying the influence of the external forcing (soil water content) on the gas concentration in different scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aguirre LA, Letellier C (2009) Modeling nonlinear dynamics and chaos: a review Mathematical Problems in Engineering 2009

  • Badino G (2009) The legend of carbon dioxide heaviness. J Cave Karst Stud 71:100–107

    Google Scholar 

  • Baldini JU, McDermott F, Hoffmann DL, Richards DA, Clipson N (2008) Very high-frequency and seasonal cave atmosphere P CO2 variability: implications for stalagmite growth and oxygen isotope-based paleoclimate records. Earth Planet Sci Lett 272:118–129

    Google Scholar 

  • Bergé P, Pomeau Y, Vidal C (1987) Order within chaos

  • Bezruchko BP, Smirnov DA (2001) Constructing nonautonomous differential equations from experimental time series. Phys Rev E 63:016207

    Google Scholar 

  • Bourges F, Genthon P, Mangin A, d’Hulst D (2006) Microclimates of l’Aven d’Orgnac and other French limestone caves (Chauvet, Esparros, Marsoulas). Int J Climatol 26:1651–1670

    Google Scholar 

  • Bourges F, Genthon P, Genty D, Lorblanchet M, Mauduit E, D’Hulst D (2014) Conservation of prehistoric caves and stability of their inner climate: lessons from Chauvet and other French caves. Sci Total Environ 493:79–91

    Google Scholar 

  • Buecher RH (1999) Microclimate study of Kartchner caverns, Arizona. J Cave Karst Stud 61:108–120

    Google Scholar 

  • Choppy J (1986) Phénomènes karstiques: Processus climatiques. Dynamique de l’air. Spéléo-Club de Paris

  • Cigna AA (2005) Radon in caves. Int J Speleol 34:1–18

    Google Scholar 

  • Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83:596–610

    Google Scholar 

  • Crouzeix C, Le Mouël J-L, Perrier F, Richon P, Morat P (2003) Long-term thermal evolution and effect of low power heating in an underground quarry. Compt Rendus Geosci 335:345–354

    Google Scholar 

  • Cuevas González J (2013) Caracterización microclimática e hidrogeoquímica de la Cueva del Canelobre (Busot, Alicante)

  • Cuezva S (2008) Dinámica microambiental de un medio kárstico somero (Cueva de Altamira, Cantabria): microclima, geomicrobiología y mecanismos de interacción cavidad-exterior. Ph. D. thesis, Universidad Complutense de Madrid

  • Cuezva S, Fernandez-Cortes A, Benavente D, Serrano-Ortiz P, Kowalski A, Sanchez-Moral S (2011) Short-term CO 2 (g) exchange between a shallow karstic cavity and the external atmosphere during summer: role of the surface soil layer. Atmos Environ 45:1418–1427

    Google Scholar 

  • De Freitas C, Littlejohn R (1987) Cave climate: assessment of heat and moisture exchange. Int J Climatol 7:553–569

    Google Scholar 

  • Dorigo W, Xaver A, Vreugdenhil M, Gruber A, Hegyiova A, Sanchis-Dufau A, Zamojski D, Cordes C, Wagner W, Drusch M (2013) Global automated quality control of in situ soil moisture data from the International Soil Moisture Network. Vadose Zone J 12(3). https://doi.org/10.2136/vzj2012.0097

  • Fernández P, Gutierrez I, Quindós L, Soto J, Villar E (1986) Natural ventilation of the paintings room in the Altamira cave. Nature 321:586–588

    Google Scholar 

  • Fernandez-Cortes A, Sanchez-Moral S, Cuezva S, Cañaveras JC, Abella R (2009) Annual and transient signatures of gas exchange and transport in the Castañar de Ibor cave (Spain). Int J Speleol 38:6

    Google Scholar 

  • Fernandez-Cortes A, Cuezva S, Sanchez-Moral S, Cañaveras JC, Porca E, Jurado V, Martin-Sanchez PM, Saiz-Jimenez C (2011a) Detection of human-induced environmental disturbances in a show cave. Environ Sci Pollut Res 18:1037–1045

    Google Scholar 

  • Fernandez-Cortes A, Sanchez-Moral S, Cuezva S, Benavente D, Abella R (2011b) Characterization of trace gases’ fluctuations on a ‘low energy’ cave (Castañar de Íbor, Spain) using techniques of entropy of curves. Int J Climatol 31:127–143

    Google Scholar 

  • Fernandez-Cortes A, Benavente D, Cuezva S, Cañaveras JC, Alvarez-Gallego M, Garcia-Anton E, Soler V, Sanchez-Moral S (2013) Effect of water vapour condensation on the radon content in subsurface air in a hypogeal inactive-volcanic environment in Galdar cave, Spain. Atmos Environ 75:15–23

    Google Scholar 

  • Freitas US, Letellier C, Aguirre LA (2009) Failure in distinguishing colored noise from chaos using the “noise titration” technique. Phys Rev E 79:035201

    Google Scholar 

  • Frisia S, Fairchild IJ, Fohlmeister J, Miorandi R, Spötl C, Borsato A (2011) Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves. Geochim Cosmochim Acta 75:380–400

    Google Scholar 

  • García-Antón E, Cuezva S, Fernandez-Cortes Á, Benavente D, Sanchez-Moral S (2014a) Main drivers of diffusive and advective processes of CO2-gas exchange between a shallow vadose zone and the atmosphere. Int J Greenh Gas Control 21:113–129

    Google Scholar 

  • García-Antón E, Cuezva S, Jurado V, Porca E, Miller AZ, Fernandez-Cortes A, Saiz-Jimenez C, Sánchez-Moral S (2014b) Combining stable isotope (δ13C) of trace gases and aerobiological data to monitor the entry and dispersion of microorganisms in caves. Environ Sci Pollut Res 21:473–484

    Google Scholar 

  • Garcia-Antón E, Cuezva S, Fernandez-Cortes A, Alvarez-Gallego M, Pla C, Benavente D, Cañaveras JC, Sanchez-Moral S (2017) Abiotic and seasonal control of soil-produced CO2 efflux in karstic ecosystems located in Oceanic and Mediterranean climates. Atmos Environ 164:31–49

    Google Scholar 

  • Gázquez F, Quindós-Poncela L, Sainz-Fernández C, Fernández-Villar A, Fuente-Merino I, Celaya-González S (2016) Spatiotemporal distribution of delta13C-CO2 in a shallow cave and its potential use as indicator of anthropic pressure. J Environ Manag 180:421–432

    Google Scholar 

  • Gilmore R, Lefranc M (2002) Topology analysis of chaos. Wiley VCH Verlagsgesellschaft

  • Gouesbet G, Letellier C (1994) Global vector-field reconstruction by using a multivariate polynomial L2 approximation on nets. Phys Rev E 49:4955

    Google Scholar 

  • Gregoric A, Zidansek A, Vaupotic J (2011) Dependence of radon levels in Postojna Cave on outside air temperature. Nat Hazards Earth Syst Sci 11:1523–1528

    Google Scholar 

  • Gutiérrez Díaz-Velarde MI (1985) Influencia de la presencia de visitantes en las características naturales de la Sala de Pinturas de Altamira. Estudio de la ventilación natural. Universidad de Cantabria

  • Hamada Y, Tanaka T (2001) Dynamics of carbon dioxide in soil profiles based on long-term field observation. Hydrol Process 15:1829–1845

    Google Scholar 

  • Hoyos M, Soler V, Cañaveras J, Sánchez-Moral S, Sanz-Rubio E (1998) Microclimatic characterization of a karstic cave: human impact on microenvironmental parameters of a prehistoric rock art cave (Candamo Cave, northern Spain). Environ Geol 33:231–242

    Google Scholar 

  • Keeling CD (1958) The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim Cosmochim Acta 13:322–334

    Google Scholar 

  • Kennel MB, Brown R, Abarbanel HD (1992) Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A 45:3403

    Google Scholar 

  • Kowalczk AJ, Froelich PN (2010) Cave air ventilation and CO 2 outgassing by radon-222 modeling: how fast do caves breathe? Earth Planet Sci Lett 289:209–219

    Google Scholar 

  • Kowalski AS, Serrano-Ortiz P, Janssens IA, Sánchez-Moral S, Cuezva S, Domingo F, Were A, Alados-Arboledas L (2008) Can flux tower research neglect geochemical CO2 exchange? Agric For Meteorol 148:1045–1054. https://doi.org/10.1016/j.agrformet.2008.02.004

  • Lejri D, Malasoma J-M (2007) Reconstruction phénoménologique de systèmes complexes forcés. Actes Rencontres Non-Linéaire 2007:104–110

    Google Scholar 

  • Letellier C (2013) Chaos in nature vol 81. World Scientific

  • Letellier C, Aguirre LA (2005) Graphical interpretation of observability in terms of feedback circuits. Phys Rev E 72:056202

    Google Scholar 

  • Letellier C, Moroz I, Gilmore R (2008) Comparison of tests for embeddings. Phys Rev E 78:026203

    Google Scholar 

  • Letellier C, Aguirre LA, Freitas U (2009) Frequently asked questions about global modeling. Chaos Interdiscip J Nonlinear Sci 19:023103

    Google Scholar 

  • Liu Z, Dreybrodt W, Wang H (2010) A new direction in effective accounting for the atmospheric CO2 budget: considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms. Earth Sci Rev 99:162–172. https://doi.org/10.1016/j.earscirev.2010.03.001

    Article  Google Scholar 

  • Loisy C, Cerepi A (2012) Radon-222 as a tracer of water–air dynamics in the unsaturated zone of a geological carbonate formation: Example of an underground quarry (Oligocene Aquitain limestone, France). Chem Geol 296:39–49

    Google Scholar 

  • Mangiarotti S (2015) Low dimensional chaotic models for the plague epidemic in Bombay (1896–1911). Chaos, Solitons Fractals 81:184–196

    Google Scholar 

  • Mangiarotti S, Huc M (2019) Can the original equations of a dynamical system be retrieved from observational time series? Chaos Interdiscip J Nonlinear Sci 29:023133

    Google Scholar 

  • Mangiarotti S, Coudret R, Drapeau L, Jarlan L (2012) Polynomial search and global modeling: two algorithms for modeling chaos. Phys Rev E 86:046205

    Google Scholar 

  • Mangiarotti S, Drapeau L, Letellier C (2014) Two chaotic global models for cereal crops cycles observed from satellite in northern Morocco. Chaos Interdiscip J Nonlinear Sci 24:023130

    Google Scholar 

  • Mangiarotti S, Le Jean F, Huc M, Letellier C (2016a) Global modeling of aggregated and associated chaotic dynamics. Chaos Solitons Fractals 83:82–96

    Google Scholar 

  • Mangiarotti S, Peyre M, Huc M (2016b) A chaotic model for the epidemic of Ebola virus disease in West Africa (2013–2016). Chaos Interdiscip J Nonlinear Sci 26:113112

    Google Scholar 

  • Mangiarotti S, Le Jean F, Chassan M, Drapeau L, Huc M (2018a) Generalized polynomial modelling, version 1.1. Comprehensive R Archive Network https://CRAN.R-project.org/package=GPoM. Acceesed 7 Mar 2019

  • Mangiarotti S, Sendiña-Nadal I, Letellier C (2018b) Using global modeling to unveil hidden couplings in small network motifs. Chaos: An Interdisciplinary Journal of Nonlinear Science 28(12):123110

  • Mangiarotti S, Zhang Y, Leblanc M (2019) Chaos theory applied to the modeling of karst springs: first results from univariate time series. Hydrogeol J 27(6):2027–2043

    Google Scholar 

  • Martin JB, Brown A, Ezell J (2013) Do carbonate karst terrains affect the global carbon cycle? Acta Carsologica 42(2–3). https://doi.org/10.3986/ac.v42i2-3.660

  • Mattey DP, Fairchild IJ, Atkinson TC, Latin J-P, Ainsworth M, Durell R (2010) Seasonal microclimate control of calcite fabrics, stable isotopes and trace elements in modern speleothem from St Michaels Cave, Gibraltar. Geol Soc Lond, Spec Publ 336:323–344

    Google Scholar 

  • Ménard O, Letellier C, Maquet J, Le Sceller L, Gouesbet G (2000) Analysis of a non synchronized sinusoidally driven dynamical system. Int J Bifurc Chaos 10(7):1759–1772

    Google Scholar 

  • Perrier F, Morat P, Le Mouël J-L (2001) Pressure induced temperature variations in an underground quarry. Earth Planet Sci Lett 191:145–156

    Google Scholar 

  • Perrier F, Richon P, Crouzeix C, Morat P, Le Mouël J-L (2004) Radon-222 signatures of natural ventilation regimes in an underground quarry. J Environ Radioact 71:17–32

    Google Scholar 

  • Peyraube N, Lastennet R, Denis A, Malaurent P, Houillon N, Villanueva JD (2017a) Determination and quantification of major climatic parameters influencing the CO2 of Lascaux Cave. Theor Appl Climatol:1–11. https://doi.org/10.1007/s00704-017-2255-x

  • Peyraube N, Lastennet R, Villanueva JD, Houillon N, Malaurent P, Denis A (2017b) Effect of diurnal and seasonal temperature variation on Cussac cave ventilation using CO2 assessment. Theor Appl Climatol 129:1045–1058

    Google Scholar 

  • Pla C, Galiana-Merino JJ, Cuezva S, Fernandez-Cortes Á, Cañaveras JC, Benavente D (2016) Assessment of CO2 dynamics in subsurface atmospheres using the wavelet approach: from cavity–atmosphere exchange to anthropogenic impacts in Rull cave (Vall d0Ebo, Spain). Environ Earth Sci 75. https://doi.org/10.1007/s12665-016-5325-y

  • Pla C, Cuezva S, Martínez-Martínez J, Fernández-Cortes A, García-Antón E, Fusi N, Crosta GB, Cuevas-González J, Cañaveras JC, Sánchez-Moral S, Benavente D (2017) Role of soil pore structure in water infiltration and CO2 exchange between the atmosphere and underground air in the vadose zone: a combined laboratory and field approach. Catena 149:402–416

    Google Scholar 

  • Quindos L, Bonet A, Diaz-Caneja N, Fernandez P, Gutierrez I, Solana J, Soto J, Villar E (1987) Study of the environmental variables affecting the natural preservation of the Altamira Cave paintings located at Santillana del Mar, Spain. Atmos Environ (1967) 21:551–560

    Google Scholar 

  • Sainz C, Rábago D, Celaya S, Fernández E, Quindós J, Quindós L, Fernández A, Fuente I, Arteche JL, Quindós LS (2018) Continuous monitoring of radon gas as a tool to understand air dynamics in the cave of Altamira (Cantabria, Spain). Sci Total Environ 624:416–423

    Google Scholar 

  • Saiz-Jimenez C, Cuezva S, Jurado V, Fernandez-Cortes A, Porca E, Benavente D, Cañaveras JC, Sanchez-Moral S (2011) Paleolithic art in peril: policy and science collide at Altamira Cave. Science 334:42–43

    Google Scholar 

  • Sanchez-Moral S, Soler V, Cañaveras J, Sanz-Rubio E, Van Grieken R, Gysels K (1999) Inorganic deterioration affecting the Altamira Cave, N Spain: quantitative approach to wall-corrosion (solutional etching) processes induced by visitors. Sci Total Environ 243:67–84

    Google Scholar 

  • Sauer T, Yorke JA, Casdagli M (1991) Embedology. J Stat Phys 65:579–616

    Google Scholar 

  • Savoy L, Surbeck H, Hunkeler D (2011) Radon and CO2 as natural tracers to investigate the recharge dynamics of karst aquifers. J Hydrol 406:148–157

    Google Scholar 

  • Spötl C, Fairchild IJ, Tooth AF (2005) Cave air control on dripwater geochemistry, Obir Caves (Austria): implications for speleothem deposition in dynamically ventilated caves. Geochim Cosmochim Acta 69:2451–2468

    Google Scholar 

  • Tans PP, Fung IY, Takahashi T (1990) Observational contrains on the global atmospheric CO2 budget. Science 247:1431–1438. https://doi.org/10.1126/science.247.4949.1431

    Article  Google Scholar 

  • Whitney H (1936) Differentiable manifolds. Ann Math 37:645–680

    Google Scholar 

  • Wigley T, Brown M (1976a) Cave meteorology the science of speleology. Academic Press, New York, pp 329–344

    Google Scholar 

  • Wigley T, Brown M (1976b) The physics of caves. Sci Speleol 3:329–347

    Google Scholar 

  • Wilkening MH, Watkins DE (1976) Air exchange and 222Rn concentrations in the Carlsbad Caverns. Health Phys 31:139–145

    Google Scholar 

Download references

Acknowledgments

The authors would like to warmly thank Pierre Genthon and François Bourges for stimulating discussions.

Funding

This research was supported by the Spanish Government (grant numbers RTI2018-099052-B-I00 and PID2019-110603RB-I00) and the Regional Government of Comunidad Valenciana, Spain (grant number AICO/2020/175). SM received financial support from the French programs Les Enveloppes Fluides et l’Environnement (CNRS-INSU) and Programme National de Télédétection Spatiale (CNRS). A post-doctoral research fellowship was awarded to S. Cuezva by the University of Almería (Hipatia Programme). A research grant for a doctoral stay was awarded to M. Sáez by the University of Alicante.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Benavente.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 24669 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sáez, M., Mangiarotti, S., Cuezva, S. et al. Global models for 222Rn and CO2 concentrations in the Cave of Altamira. Theor Appl Climatol 143, 603–626 (2021). https://doi.org/10.1007/s00704-020-03440-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-020-03440-9

Navigation