Skip to main content
Log in

Performance evaluation of numerical and machine learning methods in estimating reference evapotranspiration in a Brazilian agricultural frontier

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The reference evapotranspiration (ET0) estimates is important for water resources and irrigation management. The Penman-Monteith equation is known for its accuracy but requires a high number of climatic parameters that are not always available. Thus, this study aimed to evaluate the performance of machine learning techniques (cubist regression, artificial neural network with Bayesian regularization, support vector machine with linear kernel function) and stepwise multiple linear regression method to estimate daily ET0 with limited weather data in a Brazilian agricultural frontier (MATOPIBA). Climatic data from 2000 to 2016 obtained from 23 weather stations were used. Five data scenarios were evaluated: (i) all variables, (ii) radiation and temperature, (iii) temperature and relative humidity, (iv) wind speed and temperature, and (v) temperature. The results showed that the machine learning methods are robust in estimating ET0, even in the absence of some variables. Among the methods evaluated using only temperature data, the cubist regression showed better performance. When estimating water demand for soybean and maize crops using only temperature, the cubist regression and calibrated Hargreaves-Samani equation showed the smallest errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable

References

  • Abraham S, Raisee M, Ghorbaniasl G, Contino F, Lacor C (2017) A robust and efficient stepwise regression method for building sparse polynomial chaos expansions. J Comput Phys 332:461–474

    Google Scholar 

  • Agência Nacional de Águas (ANA) (2017) Atlas irrigação: uso da água na agricultura irrigada. ANA, Brasília 85 p

    Google Scholar 

  • Aguilar C, Polo MJ (2011) Generating reference evapotranspiration surfaces from the Hargreaves equation at watershed scale. Hydrol Earth Syst Sci 15(8):2495–2508

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. FAO, Rome, 300(9), D05109

  • Althoff D, Rodrigues LN (2019) The expansion of center-pivot irrigation in the Cerrado biome. IRRIGA 1(1):56–61

    Google Scholar 

  • Althoff D, Bazame HC, Filgueiras R, Dias SHB (2018) Heuristic methods applied in reference evapotranspiration modeling. Ciência Agrotecnol 42(3):314–324

    Google Scholar 

  • Althoff D, Filgueiras R, Dias SHB, Rodrigues LN (2019) Impact of sum-of-hourly and daily timesteps in the computations of reference evapotranspiration across the Brazilian territory. Agric Water Manag 226:105785

    Google Scholar 

  • Antonopoulos VZ, Antonopoulos AV (2017) Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables. Comput Electron Agric 132:86–96

    Google Scholar 

  • Caporusso NB, Rolim G d S (2015) Reference evapotranspiration models using different time scales in the Jaboticabal region of São Paulo, Brazil. Acta Scientiarum. Agronomy 37(1):1–9

    Google Scholar 

  • Cavalcante Junior EG, Oliveira AD, Almeida BM, Sobrinho JE (2011) Métodos de estimativa da evapotranspiração de referência para as condições do semiárido Nordestino. Semina Ciências Agrárias 32(supl.1):1699–1708

    Google Scholar 

  • da Silva Farias VD, Costa DLP, de Novoa Pinto JV, de Souza PJOP, de Souza EB, Ortega-Farias S (2020) Calibration of reference evapotranspiration models in Pará. Acta Sci Agron 42:e42475–e42475

    Google Scholar 

  • de Miranda EE, Magalhães LA, de Carvalho CA (2014) Proposta de Delimitação Territorial do MATOPIBA. Embrapa Territorial-Outras publicações técnicas (INFOTECA-E) 

  • Doorenbos J, Pruitt WO (1977) Guidelines for predicting crop water requirements. Rome: FAO, 179 p. (Irrigation and Drainage Paper, 24)

  • FAO (2015) Towards a water and food secure future: critical perspectives for policy-makers. Food and Agriculture Organization of the United Nations, Rome, and World Water Council, Marseille. 61 pp

  • Fernandes LC, Paiva CM, Rotunno Filho OC (2012) Evaluation of six empirical evapotranspiration equations - case study: Campos dos Goytacazes/RJ. Rev Bras Meteorol 27(3):272–280

    Google Scholar 

  • Ferreira LB, da Cunha FF (2020) New approach to estimate daily reference evapotranspiration based on hourly temperature and relative humidity using machine learning and deep learning. Agric Water Manag 234:106113

    Google Scholar 

  • Ferreira LB, Cunha FF, Duarte AB, Sediyama GC, Cecon PR (2018) Calibration methods for the Hargreaves-Samani equation. Ciência Agrotecnol 42(1):104–114

    Google Scholar 

  • Ferreira LB, da Cunha FF, de Oliveira RA, Fernandes Filho EI (2019) Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM – a new approach. J Hydrol 572:556–570

    Google Scholar 

  • Fishman R, Devineni N, Raman S (2015) Can improved agricultural water use efficiency save India’s groundwater? Environ Res Lett 10(8):084022

    Google Scholar 

  • Gurski BC, Jerszurki D, Souza JLMD (2018) Alternative methods of reference evapotranspiration for Brazilian climate types. Rev Bras Meteorol 33(3):567–578

    Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99

    Google Scholar 

  • Hassan MA, Khalil A, Kaseb S, Kassem MA (2017) Exploring the potential of tree-based ensemble methods in solar radiation modeling. Appl Energy 203:897–916

    Google Scholar 

  • Hupet F, Vanclooster M (2001) Effect of the sampling frequency of meteorological variables on the estimation of the reference evapotranspiration. J Hydrol 243(3–4):192–204

    Google Scholar 

  • Karatzoglou A, Smola A, Hornik K, Zeileis A (2004) kernlab-an S4 package for kernel methods in R. J Stat Softw 11(9):1–20

    Google Scholar 

  • Keshtegar B, Kisi O, Arab HG, Zounemat-Kermani M (2018) Subset modeling basis ANFIS for prediction of the reference evapotranspiration. Water Resour Manag 32(3):1101–1116

    Google Scholar 

  • Kisi O, Alizamir M (2018) Modelling reference evapotranspiration using a new wavelet conjunction heuristic method: wavelet extreme learning machine vs wavelet neural networks. Agric For Meteorol 263:41–48

    Google Scholar 

  • Kuhn M, Quinlan R (2018) Cubist: rule-and instance-based regression modeling. R package version 0.2. 2

  • Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z, Team RC (2018) caret: classification and regression training. R package version v6. 0.82. 2017

  • Lacerda ZC, Turco JE (2015) Estimation methods of reference evapotranspiration (ETo) for Uberlândia-MG. Engenharia Agrícola 35(1):27–38

    Google Scholar 

  • López-Urrea R, de Santa Olalla FM, Fabeiro C, Moratalla A (2006) Testing evapotranspiration equations using lysimeter observations in a semiarid climate. Agric Water Manag 85:15–26

    Google Scholar 

  • Makkink GF (1957) Testing the Penman formula by means of lysimeters. J Inst Water Eng 11:277–288

    Google Scholar 

  • Martinez CJ, Thepadia M (2009) Estimating reference evapotranspiration with minimum data in Florida. J Irrig Drain Eng 136(7):494–501

    Google Scholar 

  • Moré JJ (1978) The Levenberg-Marquardt algorithm: implementation and theory. In: Numerical analysis. Springer, Berlin, pp 105–116

    Google Scholar 

  • Palaretti LF, Mantovani EC, Sediyama GC (2014) Análise da sensibilidade dos componentes da equação de Hargreaves-Samani para a região de Bebedouro-SP. Rev Bras Meteorologia 29(2):299–306

    Google Scholar 

  • Pérez-Rodriguez P, Gianola D (2013) brnn: brnn (Bayesian regularization for feed-forward neural networks). R package version 0.3. R Found. Stat. Comput., Vienna

  • Pilau FG, Battisti R, Somavilla L, Righi EZ (2012) Desempenho de métodos de estimativa da evapotranspiração de referência nas localidades de Frederico Westphalen e Palmeira das Missões, RS. Ciência Rural 42(2):283–290

    Google Scholar 

  • Pradhan P, Fischer G, van Velthuizen H, Reusser DE, Kropp JP (2015) Closing yield gaps: how sustainable can we be? PLoS One 10(6):e0129487

    Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100(2):81–92

    Google Scholar 

  • R Core Team (2018). R version 3.5. 0. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Seifi A, Riahi H (2020) Estimating daily reference evapotranspiration using hybrid gamma test-least square support vector machine, gamma test-ANN, and gamma test-ANFIS models in an arid area of Iran. Journal of Water and Climate Change, 11(1):217–240

  • Shiri J, Nazemi AH, Sadraddini AA, Landeras G, Kisi O, Fard AF, Marti P (2014) Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran. Comput Electron Agric 108:230–241

    Google Scholar 

  • Silva VPR, Maciel GF, Braga CC, Júnior S, Souza EP, Almeida RSR, Silva MT, Holanda RM (2018) Calibration and validation of the AquaCrop model for the soybean crop grown under different levels of irrigation in the Motopiba region, Brazil. Ciência Rural, 48(1), e20161118. Epub December 21, 2017.https://doi.org/10.1590/0103-8478cr20161118

  • Sparovek G, Maule RF, Barretto AGOP, Dourado Neto D, Martins SP (2014) Análise territorial para o desenvolvimento da agricultura irrigada no Brasil. MI/FEALQ, Piracicaba

    Google Scholar 

  • Stöckle CO, Kjelgaard J, Bellocchi G (2004) Evaluation of estimated weather data for calculating Penman-Monteith reference crop evapotranspiration. Irrig Sci 23:39–46

    Google Scholar 

  • Tabari H (2010) Evaluation of reference crop evapotranspiration equations in various climates. Water Resour Manag 24(10):2311–2337

    Google Scholar 

  • Tabari H, Nikbakht J, Talaee PH (2012) Identification of Trend in Reference Evapotranspiration Series with Serial Dependence in Iran. Water Resources Management 26(8):2219–2232

  • Torres AF, Walker WR, McKee M (2011) Forecasting daily potential evapotranspiration using machine learning and limited climatic data. Agric Water Manag 98(4):553–562

    Google Scholar 

  • Torres R, Ohashi O, Pessin G (2019) A machine-learning approach to distinguish passengers and drivers reading while driving. Sensors 19(14):3174

    Google Scholar 

  • Wang Y, Liu B, Su B, Zhai J, Gemmer M (2011) Trends of calculated and simulated actual evaporation in the Yangtze River basin. J Clim 24(16):4494–4507

    Google Scholar 

  • Wen X, Si J, He Z, Wu J, Shao H, Yu H (2015) Support-vector-machine-based models for modeling daily reference evapotranspiration with limited climatic data in extreme arid regions. Water Resour Manag 29(9):3195–3209

    Google Scholar 

  • Wu L, Fan J (2019) Comparison of neuron-based, kernel-based, tree-based and curve-based machine learning models for predicting daily reference evapotranspiration. PloS one, v. 14, n. 5, p. e0217520

  • Zhang X, Yan X (2014) Temporal change of climate zones in China in the context of climate warming. Theor Appl Climatol 115(1–2):167–175

    Google Scholar 

  • Zscheischler J, Mahecha MD, Harmeling S (2012) Climate classifications: the value of unsupervised clustering. Procedia Computer Science 9:897–906

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Institute of Meteorology (INMET) for providing the climatic data used in the present study.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil, Finance Code 001

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. Material preparation, data collection, and analysis were carried out by Diego Bispo dos Santos Farias, Daniel Althoff, Lineu Neiva Rodrigues, and Roberto Filgueiras. The first draft of the manuscript was written by Diego Bispo dos Santos Farias, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Diego Bispo dos Santos Farias.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Farias, D.B., Althoff, D., Rodrigues, L.N. et al. Performance evaluation of numerical and machine learning methods in estimating reference evapotranspiration in a Brazilian agricultural frontier. Theor Appl Climatol 142, 1481–1492 (2020). https://doi.org/10.1007/s00704-020-03380-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-020-03380-4

Navigation