Skip to main content

Advertisement

Log in

Aridity in the Iberian Peninsula (1960–2017): distribution, tendencies, and changes

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Aridity is a climatic characteristic that has a significant impact on many aspects of life, mainly in agriculture but also in other economic sectors, and temperature and precipitation are the variables by which the effects of aridity can be measured. It is necessary to know its distribution and trend in different climate change scenarios. The Iberian Peninsula presents a strong contrasting climate, comprising both humid and very dry regions. Forty-five climatic time series were used to perform a spatial and temporal analysis and to identify possible points of trend change in annual aridity for the period from 1960 to 2017. Two indices were considered: the De Martonne Index (IDM) and the Food and Agriculture Organisation (FAO) Index (IF). By means of ordinary kriging, maps of spatial, temporal, and trend distributions were made. The trends of the aridity indices, annual temperature, and annual precipitation were analysed by applying the techniques of the modified Mann-Kendall test and Sen’s estimator; furthermore, to identify gaps of years in the series, the Buishand range test was used. The results showed a significant average annual temperature increase at all stations. Although annual precipitation decreased across the board, this decrease was not significant. Semi-arid was the dominant class, although the study area showed great variability, i.e. from extremely humid areas to arid zones. Forty-one out of the 45 series presented increasing aridity during the study period, although the trend was significant in only 16 of the series. From the Buishand range test for both aridity indices, the results revealed a noteworthy changing point for IDM and for IF. Although the changing point was variable, it was concentrated around the late 1970s and early 1980s, and from that period, the aridity tendency was dependent on the analysed series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AEMET, IM (2011) Iberian climate atlas. Air temperature and precipitation (1971–2000). Agencia Estatal de Meteorología e Instituto de Metereología, Madrid, Spain

    Google Scholar 

  • Agnew C, Anderson W (1992) Water in the arid realm. Routledge, London

    Google Scholar 

  • Aldamo SB (2003) Vulnerable people in fragile lands: migration and desertification in the drylands of Argentina. The case of the department of Jáchal. PhD thesis. The University of Texas, Austin. 313 p.

  • Allen RG, Pereira LS, Raes D, Smith M (1998) FAO Irrigation and Drainage Paper, N° 56. In: Crop evapotranspiration. Guidelines for computing crop water requirements. FAO, Rome

    Google Scholar 

  • Arora VK (2002) The use of the aridity index to assess climate change effect on annual runoff. J Hydrol 265(1-4):164–177

    Google Scholar 

  • Baltas E (2007) Spatial distribution of climatic indices in northern Greece. Meteorol Appl 14:69–78

    Google Scholar 

  • Bannayan M, Sanjani S, Alizadeh A, Sadeghi-Lotfabadi S, Mohamadian A (2010) Association between climate indices, aridity index, and rainfed crop yield in northeast of Iran. Field Crop Res 118:105–114

    Google Scholar 

  • Bladé I, Castro-Díez Y (2010) Tendencias atmosféricas en la Península Ibérica durante el periodo instrumental en el contexto de la variabilidad natural. In: Pérez F, Boscolo R (eds) Clima de España: Pasado Presente y Futuro. Informe de Evaluación del Cambio Climático Regional. Red Climática. CLIVAR-ESPAÑA, Madrid, pp 26–42

    Google Scholar 

  • Bogino S, Bravo F (2008) Growth response of Pinus pinaster Ait. to climatic variables in central Spanish forests. Ann For Sci 68:506–518

    Google Scholar 

  • Bogino S, Fernández-Nieto MJ, Bravo F (2009) Climate effect on radial growth of Pinus sylvestris at its southern and western distribution limits. Silva Fenn 43(4):609–623

    Google Scholar 

  • Brunet M, Saladie O, Jones P, Sigro J, Aguilar E, Moberg A, Lister D, Walther A, Lopez D, Almarza C (2006) The development of a new dataset of Spanish daily adjusted temperature series (SDATS) (1850-2003). Int J Climatol 26:1777–1802

    Google Scholar 

  • Brunet M, Jones P, Sigro J, Saladie O, Aguilar E, Moberg A, Della-Marta PM, Lister D, Walther A, Lopez D (2007) Temporal and spatial temperature variability and change over Spain during 1850–2005. J Geophys Res 112:D12117

    Google Scholar 

  • Brunetti M, Maugeri M, Monti F, Nanni T (2006) Temperature and precipitation variability in Italy during the last two centuries from homogenized instrumental time series. Int J Climatol 26:345–381

    Google Scholar 

  • Buishand TA (1982) Some methods for testing the homogeneity of rainfall records. J Hydrol 58(1):11–27

    Google Scholar 

  • Byakatonda J, Parida BP, Kenabatho PK, Moalafhi DB (2018) Analysis of rainfall and temperature time series to detect long-term climatic trends and variability over semi-arid Botswana. J Earth Syst Sci 127:25

    Google Scholar 

  • Carrión JS, Fernández S, Jiménez-Moreno G, Fauquette S, Gil-Romera G, González-Sampériz P, Finlayson C (2010) The historical origins of aridity and vegetation degradation in southeastern Spain. J Arid Environ 74:731–736

    Google Scholar 

  • Chakraborty D, Saha S, Singh RK et al (2017) Trend analysis and change point detection of mean air temperature: a spatio-temporal perspective of North-Eastern India. Environ Process 4:937–957

    Google Scholar 

  • Coll JR, Jones PD, Aguilar E (2015) Expected changes in mean seasonal precipitation and temperature across the Iberian Peninsula for the 21st century. Idójárás 119(1):1–22

    Google Scholar 

  • Coll JR, Aguilar E, Prohom M, Sigró J (2016) Long-term drought variability and trends in Barcelona (1787–2014). Cuad Investig Geogr 42:29–48

    Google Scholar 

  • Coll J, Aguilar E, Ashcroft L (2017) Drought variability and change across the Iberian Peninsula. Theor. Appl. Climatol. 130(3–4):901–916

    Google Scholar 

  • Cook ER, Seager R, Cane MA, Stahle DW (2007) North American drought: reconstructions, causes, and consequences. Earth Sci Rev 81:93–134

    Google Scholar 

  • Cortesi N, Gonzalez-Hidalgo JC, Trigo RM, Ramos AM (2013) Weather types and spatial variability of precipitation in the Iberian Peninsula. Int J Climatol 34:2661–2677

    Google Scholar 

  • Costa AC, Soares A (2012) Local spatiotemporal dynamics of a simple aridity index in a region susceptible to desertification. J Arid Environ 87:8–18

    Google Scholar 

  • Croitoru AE, Piticar A, Imbroane A, Burada DC (2013) Spatiotemporal distribution of aridity indices based on temperature and precipitation in the extra-Carpathian regions of Romania. Theor and Appli Climatol 112:597–607

    Google Scholar 

  • De Castro M, Martín-Vide J, Alonso S (2005) El clima de España: pasado, presente y escenarios de clima para el siglo XXI. In: Impactos del Cambio Climático en España. Ministerio Medio Ambiente, Madrid, pp 1–64

    Google Scholar 

  • De Luis M, Gonzalez-Hidalgo JC, Brunetti M, Longares LA (2011) Precipitation concentration changes in Spain 1946–2005. Nat. Hazards Earth Syst Sci 11:1259–1265

    Google Scholar 

  • De Martonne E (1925) Traité de Géographie Physique, Vol I: Notions generales, climat, hydrographie. Geogr Rev 15(2):336–337

    Google Scholar 

  • Del Río S, Herrero L, Fraile R, Penas A (2011) Spatial distribution of recent rainfall trends in Spain (1961–2006). Int J Climatol 31:656–667

    Google Scholar 

  • Del Río S, Cano-Ortiz A, Herrero L, Penas A (2012) Recent trends in mean maximum and minimum air temperatures over Spain (1961–2006). Theor Appl Climatol 109:605–626

    Google Scholar 

  • ECA&D (2013) Algorithm basis document (ATBD). Royal Netherlands Meteorological Institute KNMI. http://www.ecad.eu/documents/atbd.pdf. Accessed 10 April 2015

  • EL Kenawy A, López-Moreno JI, Brunsell NA, Vicente-Serrano SM (2013) Anomalously severe cold nights and warm days in northeastern Spain: their spatial variability, driving forces and future projections. Glob Planet Chang 101:12–32

    Google Scholar 

  • European Communities (2007) Addressing the challenge of water scarcity and droughts in the European Union. Commun Com 414 Final, Brussels. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2012:0673:FIN:EN:PDF. Accessed 5 April 2015

  • FAO (Food and Agriculture Organization of the United Nations-with UNESCO and WMO) (1977) World map of desertification. Food and Agricultural Organization (FAO), Rome

    Google Scholar 

  • Fyfe JC, Gillett NP, Zwiers FW (2013) Overestimated global warming over the past 20 years. Nat Clim Chang 3:767–769

    Google Scholar 

  • García-Haro FJ, Campos-Taberner M, Sabater N, Belda F, Moreno A, Gilabert MA, Martínez B, Pérez-Hoyos A, Meliá J (2014) Vulnerabilidad de la vegetación a la sequía en España. Rev Teledetec 42:29–37

    Google Scholar 

  • González-Hidalgo JC, Pena-Angulo D, Brunetti M, Cortesi N (2015) MOTEDAS: a new monthly temperature database for mainland Spain and the trend in temperature (1951-2010). Int J Climatol 31:715–731

    Google Scholar 

  • González-Hidalgo JC, Peña-Angulo D, Brunetti M, Cortesi C (2016) Recent trend in temperature evolution in Spanish mainland (1951–2010): from warming to hiatus. Int J Climatol 36:2405–2416

    Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Goyal RK (2004) Sensitivity of evapotranspiration to global warming: a case study of arid zone of Rajasthan (India). Agric Water Manag 69:1–11

    Google Scholar 

  • Guerreiro SB, Kilsby GG, Serinaldi F (2014) Analysis of time variation of rainfall in transnational basins in Iberia: abrupt changes or trends? J Climatol 34(1):114–133

    Google Scholar 

  • Guijarro JA (2013) Tendencias de la temperatura. In: Garcia-Legaz C, Valero F (eds) Fenómenos Meteorológicos Adversos en España. WCRP, AMV Ediciones, Madrid, pp 313–323

    Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99

    Google Scholar 

  • Hartmann DL, AMG K-T, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: atmosphere and surface. In: Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Haskett JD, Pachepsky YA, Acock B (2000) Effect of climate and atmospheric change on soybean water stress: a study of Iowa. Ecol Model 135:265–277

    Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily higher-solution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119

    Google Scholar 

  • Herrera S, Gutierrez J, Ancell R, Pons M, Frías M, Fernandez J (2010) Development and analysis of a 50 year high-resolution daily gridded precipitation dataset over Spain (Spain). Int J Climatol 32:74–85

    Google Scholar 

  • Herrero J, Snyder RL (1997) Aridity and irrigation in Aragon, Spain. J Arid Environ 35(3):535–547

    Google Scholar 

  • Hoerling M, Eischeid J, Perlwitz J, Quan X, Zhang T, Pegion P (2011) On the increased frequency of Mediterranean Drought. J Clim 25(6):2146–2161

    Google Scholar 

  • Hrnjak I, Lukić T, Gavrilov MB, Marković SB, Unkašević M, Tošić I (2014) Aridity in Vojvodina, Serbia. Theor and Appli Climatol 115(1):323–332

    Google Scholar 

  • IPCC (2007) Intergovernmental panel on climate change. IPCC fourth assessment report, the physical science basis, Geneva, CH, Switzerland. http://www.ipcc.ch/report/ar4/wg1/. Accessed 5 May 2014

  • IPCC (2013) Climate Change 2013: The physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 1535

    Google Scholar 

  • Jones JR, Schwartz JS, Ellis KN, Hathaway JM, Jawdy CM (2015) Temporal variability of precipitation in the Upper Tennessee Valley. J Hydrol Reg Stud 3:125–138

    Google Scholar 

  • Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, London

    Google Scholar 

  • Khalili D, Farnoud T, Jamshidi H, Kamgar-Haghighi AA, Zand-Parsa S (2011) Comparability analyses of the SPI and RDI meteorological drought indices in different climatic zones. Water Resour Manag 25(6):1737–1757

    Google Scholar 

  • Kiely G (1999) Climate change in Ireland from precipitation and streamflow observations. Adv Water Resour 23:141–151

    Google Scholar 

  • Kirtman B, Power SB, Adedoyin JA, Boer GJ, Bojariu R, Camilloni I, Doblas-Reyes FJ, Fiore KM, Meehl GA, Prather M, Sarr A, Schär C, Sutton R, Van Oldenborgh GJ, Vecchi G, Wang HJ (2013) Near-term climate change: projections and predictability. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Klein-Tank AMG, Wijngaard JB, Konnen GP (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22:1441–1453

    Google Scholar 

  • Köppen W (1900) Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzen-welt. Geogr Z 6:593–611

    Google Scholar 

  • Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407

    Google Scholar 

  • Lorenzo-Lacruz J, Vicente-Serrano SM, López-Moreno JI, Morán-Tejeda E, Zabalza J (2012) Recent trends in Iberian streamflows (1945–2005). J Hydrol 414/415:463–475

    Google Scholar 

  • Lorenzo-Lacruz J, Morán-Tejeda E, Vicente-Serrano SM, López-Moreno JI (2013) Streamflow droughts in the Iberian Peninsula between 1945 and 2005: spatial and temporal patterns. Hydrol Earth Sys Sc 17:119–134

    Google Scholar 

  • Maliva R, Missimer T (2012) Aridity and drought. Arid lands water evaluation and management, Springer, Berlin Heidelberg, In, pp 21–39

    Google Scholar 

  • Mann HB (1945) Non-parametric tests against trend. Econometrica 13:245–259

    Google Scholar 

  • Martínez MD, Serra C, Burgueño A, Lana X (2010) Time trends of daily maximum and minimum temperatures in Catalonia (NE Spain) for the period 1975–2004. Int J Climatol 30:267–290

    Google Scholar 

  • Moral FJ (2010) Comparison of different geostatistical approaches to map climate variables: application to precipitation. Int J Climatol 30(4):620–631

    Google Scholar 

  • Moral FJ, Rebollo FJ, Paniagua LL, García-Martín A, Honorio F (2015) Spatial distribution and comparison of aridity indices in Extremadura, southwestern Spain. Theor Appl Climatol 126:801–814

    Google Scholar 

  • Nastos PT, Politi N, Kapsomenakis J (2013) Spatial and temporal variability of the aridity index in Greece. Atmos Res 119:140–152

    Google Scholar 

  • Olivar J, Bogino S, Spiecker H, Bravo F (2012) Climate impact on growth dynamic and intra-annual density fluctuations in Aleppo pine (Pinus halepensis) trees of different crown classes. Dendro 30(1):35–47

    Google Scholar 

  • Olivar J, Rathgeber C, Bravo F (2015) Climate change, tree-ring width and wood density of pines in mediterranean enviroments. IAWA J 36(3):257–269

    Google Scholar 

  • Paltineanu C, Mihailescu IF, Seceleanu I, Dragota C, Vasenciuc F (2007) Using aridity indices to describe some climate and soil features in Eastern Europe: a Romanian case study. Theor and Appl Climatol 90:263–274

    Google Scholar 

  • Pandey BK, Khare D (2018) Identification of trend in long term precipitation and reference evapotranspiration over Narmada river basin (India). Glob Planet Chang 161:172–182

    Google Scholar 

  • Paredes D, Trigo RM, García-Herrera R, Trigo IF (2006) Understanding precipitation changes in Iberia in early spring: weather typing and storm-tracking approaches. J Hydrometeorol 7(1):101–113

    Google Scholar 

  • Peña-Gallardo M, Gámiz-Fortis SR, Castro-Díez Y, Esteban-Parra MJ (2016) Análisis comparativo de índices de sequía en Andalucía para el periodo 1901–2012. Cuad Invest Geogr 42:67

    Google Scholar 

  • Ramarao MVS, Sanjay J, Krishnan R, Bazaz A, Reviet A (2018) On observed aridity changes over the semiarid regions of India in a warming climate. Theor Appl Climatol. https://doi.org/10.1007/s00704-018-2513-6

    Google Scholar 

  • Ramos AM, Trigo RM, Santo FE (2011) Evolution of extreme temperatures over Portugal: recent changes and future scenarios. Clim Res 48:177–192

    Google Scholar 

  • Ríos D, Penas D, del Rio S (2012) Comparative analysis of mean temperature trends in continental Spain over the period 1961–2010. Int J Geobot Res 2:41–55

    Google Scholar 

  • Rodríguez-Puebla C, Encinas A, Nieto S, Garmendia J (1998) Spatial and temporal patterns of annual precipitation variability over the Iberian Peninsula. Int J Climatol 18:299–316

    Google Scholar 

  • Ruiz-Sinoga JD, Marin RG, Murillo JFM, Galeote MAG (2011) Precipitation dynamics in southern Spain: trends and cycles. Int J Climatol 31:2281–2289

    Google Scholar 

  • Salmi T, Määttä A, Anttila P, Ruoho-Airola T, Amnell T (2002) Publications on Air Quality no. 31. In: Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen’s slope estimates–the Excel template application MAKESENS. Finnish Meteorological Institute, Helsinki

    Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389

    Google Scholar 

  • Shah A (2010) Land degradation and migration in a dry land region in India: extent, nature and determinants. Environ Dev Econ 15(2):173–196

    Google Scholar 

  • Shahid S (2008) Spatial and temporal characteristics of droughts in the western part of Bangladesh. Hydrol Process 22:2235–2247

    Google Scholar 

  • Shahid S (2010) Spatio-temporal variation of aridity and dry period in term of irrigation demand in Bangladesh. American-Eurasian J Agric & Environ Sci 7(4):386–396

    Google Scholar 

  • Shifteh Somee B, Ezani A, Tabari H (2012) Spatiotemporal trends and change point of precipitation in Iran. Atmos Res 113:1–12

    Google Scholar 

  • Sigró J, Brunet M, Domonkos P, Aguilar E, Gilabert A, Lister D, LunaY MA, Jones PD (2015) Long-term temperature change over mainland Spain: an update to 2014 and reassessment of the Spanish Daily Adjusted Temperature Series (SDATS). Proceeding of the CLIMATE-ES Workshop. Tortosa, Spain Available at: http://www.climaes2015.urv.cat/wp-content/uploads/2015/02/CLIMA2015_2_Javier-Sigro-Rodriguez.pdf. Accessed 2 April 2018

    Google Scholar 

  • Tabari H, Aghajanloo MB (2012) Temporal pattern of aridity index in Iran with considering precipitation and evapotranspiration trends. Int J Climatol 33:396–409

    Google Scholar 

  • Tabari H, Hosseinzadeh Talaee P (2013) Moisture index for Iran: trend analysis. Glob Planet Chang 100:11–19

    Google Scholar 

  • Tabari H, Hosseinzadeh Talee P (2011) Temporal variability of precipitation over Iran: 1966–2005. J Hydrol 396:313–320

    Google Scholar 

  • Tabari H, Abghani H, Hosseinzadeh Talaee P (2012) Temporal trends and spatial characteristics of drought and rainfall in arid and semi-arid regions of Iran. Hydrol Process 26(22):3351–3361

    Google Scholar 

  • Tabari H, Hosseinzadeh Talaee P, Mousavi Nadushani S, Willems P, Marchetoo A (2014) A survey of temperature and precipitation based aridity indices in Iran. Quat Int 345:158–166

    Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94

    Google Scholar 

  • Trenberth KE, Dai A, Van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Chang 4:17–22

    Google Scholar 

  • Trigo IF (2006) Climatology and interannual variability of stormtracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses. Clim Dyn 26(2–3):127–143

    Google Scholar 

  • Tsakiris G, Vangelis H (2004) Towards a drought watch system based on spatial SPI. Water Resour Manag 18(1):1–12

    Google Scholar 

  • Vicente-Serrano SM (2013) Spatial and temporal evolution of precipitation droughts in Spain in the last century. In: Martínez CG-L, Rodríguez FV (eds) meteorological extremes in Spain and in adverse weather in Spain. Agencia Estatal de Meteorología (AEMET), Madrid, pp 283–296

    Google Scholar 

  • Vicente-Serrano SM, Azorin-Molina C, Sanchez-Lorenzo A, Revuelto J, Lopez-Moreno JI, González-Hidalgo JC, Espejo F (2014) Reference evapotranspiration variability and trends in Spain (1961–2011). Glob Planet Change 121:26–40

    Google Scholar 

  • Wijngaard JB, Klein Tank AMG, Können GP (2003) Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol 23:679–692

    Google Scholar 

  • Winslow M, Shapiro BI, Thomas R, Shetty SVR (2004) Desertification, drought, poverty and agriculture: research lessons and opportunities. Aleppo, Syria; Patancheru, India; and Rome, Italy: International Center for Agricultural Research in the Dry Areas (ICARDA), and the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), and the UNCCD Global Mechanism (GM). http://www.unpei.org/sites/default/files/PDF/resourceefficiency/KM-resourceDesertification-Drought-Poverty-Agriculture2004.pdf. Accessed 3 March 2014

  • WMO (2009) Guide to hydrological practices. Volume II—management of water resources and application of hydrological practices. World Meteorological Organization, WMO-No. 168, Sixth edition, Geneva, Switzerland

    Google Scholar 

  • WMO (2011) Guide to climatological practices (WMO No. 100). 3rd Edition. Geneva. http://library.wmo.int/pmb_ged/wmo_100_en.pdf. Accessed 28 March 2018

  • Wong G, Lambert MF, Leonard M, Metcalfe AV (2009) Drought analysis using trivariate copulas conditional on climatic states. J Hydrol Eng 15(2):129–141

    Google Scholar 

  • Xoplaki E, Luterbacher J, Gonzalez-Rouco JF (2006) Mediterranean summer temperature and winter precipitation, large-scale dynamics, trends. Nuovo Cimento C 29(1):45–54

    Google Scholar 

  • Yu PS, Yang TC, Chou CC (2002) Effects of climate change on evapotranspiration from paddy fields in southern Taiwan. Clim Chang 54:165–179

    Google Scholar 

  • Yue S, Wang CY (2002) Applicability of prewhitening to eliminate the influence of serial correlation on the Mann–Kendall test. Water Resour Res 38(6):41–47

    Google Scholar 

  • Zambakas J (1992) General climatology. Department of Geology, National & Kapodistrian University of Athens, Athens

    Google Scholar 

  • Zarghami M, Abdi A, Babaeian I, Hassanzadeh Y, Kanani R (2011) Impacts of climate change on runoffs in East Azerbaijan, Iran. Glob Planet Chang 78(3-4):137–146

    Google Scholar 

  • Zhang Q (2003) Drought and its impacts. In: Chen H (ed) China climate impact assessment. China Meteorol Press, Beijing, pp 12–18

    Google Scholar 

  • Zhang Q, Xu C-Y, Tao H, Jiang T, Chen YD (2010) Climate changes and their impacts on water resources in the arid regions: a case study of the Tarim River basin, China. Stoch Env Res Risk A 24:349–358

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to two anonymous reviewers for providing constructive comments which contributed to improve the final version of this paper.

Funding

This research was funded by the Junta de Extremadura and the European Regional Development Fund (ERDF) through the projects GR18086 and GR18088 (research groups TIC008 and RMN028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.L. Paniagua.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paniagua, L., García-Martín, A., Moral, F. et al. Aridity in the Iberian Peninsula (1960–2017): distribution, tendencies, and changes. Theor Appl Climatol 138, 811–830 (2019). https://doi.org/10.1007/s00704-019-02866-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-019-02866-0

Navigation