Skip to main content

Advertisement

Log in

Comparison of two bias correction methods for precipitation simulated with a regional climate model

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This study evaluates the performance of two bias correction techniques—power transformation and gamma distribution adjustment—for Eta regional climate model (RCM) precipitation simulations. For the gamma distribution adjustment, the number of dry days is not taken as a fixed parameter; rather, we propose a new methodology for handling dry days. We consider two cases: the first case is defined as having a greater number of simulated dry days than the observed number, and the second case is defined as the opposite. The present climate period was divided into calibration and validation sets. We evaluate the results of the two bias correction techniques using the Kolmogorov-Smirnov nonparametric test and the sum of the differences between the cumulative distribution curves. These tests show that both correction techniques were effective in reducing errors and consequently improving the reliability of the simulations. However, the gamma distribution correction method proved to be more efficient, particularly in reducing the error in the number of dry days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berg P, Feldmann H, Panitz HJ (2012) Bias correction of high resolution regional climate model data. J Hydrol 448–449:80–92. doi:10.1016/j.jhydrol.2012.04.026

    Article  Google Scholar 

  • Chou SC, Bustamante J, Gomes JL (2005) Evaluation of Eta model seasonal precipitation forecasts over South America. Nonlinear Proc Geoph 12:537–555

    Article  Google Scholar 

  • Chou SC, Marengo JA, Lyra A, Sueiro G, Pesquero J, Alves LM, Kay G, Betts R, Chagas D, Gomes JL, Bustamante J, Tavares P (2012) Downscaling of South America present climate driven by 4-member HadCM3 runs. Clim Dyn 38:635–653. doi:10.1007/s00382-011-1002-8

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Maganã Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Chapter 11, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York

    Google Scholar 

  • Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547–1578. doi:10.1002/joc.1556

    Article  Google Scholar 

  • Hagemann S, Chen C, Haerter JO, Heinke J, Gerten D, Piani C (2011) Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J Hydrometeor 12:556–578. doi:10.1175/2011jhm1336.1

    Article  Google Scholar 

  • Hnilica J, Pus V (2013) Linear methods for the statistical transformation of daily precipitation sums from regional climate models. Theor Appl Climatol 111:29–36. doi:10.1007/s00704-012-0638-6

    Article  Google Scholar 

  • Laprise R, Elía R, Caya D, Biner S, Lucas-Picher P, Diaconescu E, Leduc M, Alexandru A, Separovic L (2008) Challenging some tenets of regional climate modelling. Meteorol Atmos Phys 100:3–22. doi:10.1007/s00703-008-0292-9

    Article  Google Scholar 

  • Leander R, Buishand TA (2007) Resampling of regional climate model output for the simulation of extreme river flows. J Hydrol 332:487–496. doi:10.1016/j.jhydrol.2006.08.006

    Article  Google Scholar 

  • Leander R, Buihand TA, Van der Hurk BJJM, de Wit MJM (2008) Estimated changes in flood quantiles of the river Meuse from resampling of regional climate model output. J Hydrol 351:331–343. doi:10.1016/j.jhydrol.2007.12.020

    Article  Google Scholar 

  • Marengo JA, Chou SC, Kay G, Alves LM, Pesquero JF, Soares WR, Santos DC, Lyra AA, Sueiro G, Betts R, Chagas DJ, Gomes JL, Bustamante JF, Tavares P (2012) Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Clim Dyn 38:1829–1848. doi:10.1007/s00382-011-1155-5

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Nakicenovic N, Swart R (eds) (2000) Special report on emissions scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  • Olver FWJ, Lozier DW, Boisvert RF, Clark CW (eds) (2010) NIST handbook of mathematical functions. Cambridge University Press, Cambridge

    Google Scholar 

  • Pesquero JF, Chou SC, Nobre CA, Marengo JA (2009) Climate downscaling over South America for 1961–1970 using the Eta model. Theor Appl Climatol 99:75–93. doi:10.1007/s00704-009-0123-z

    Article  Google Scholar 

  • Piani C, Haerter JO, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99:187–192. doi:10.1007/s00704-009-0134-9

    Article  Google Scholar 

  • Press WH (1992) Numerical recipes in C: the art of scientific computing. Cambridge University Press, New York

    Google Scholar 

  • SIGRH (2013) Sistema de Informação para o Gerenciamento de Recursos Hídricos. Banco de Dados Pluviométricos do Estado de São Paulo. http://www.sigrh.sp.gov.br/cgi-bin/bdhm.exe/plu. Accessed 25 Jan 2013

  • Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456–457:12–29. doi:10.1016/j.jhydrol.2012.05.052

    Article  Google Scholar 

  • Themeßl MJ, Gobiet A, Leuprecht A (2011) Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int J Climatol 31:1530–1544. doi:10.1002/joc.2168

    Article  Google Scholar 

  • Thom HCS (1958) A note on the gamma distribution. Mon Weather Rev 86:117–122

    Article  Google Scholar 

  • Viola MR, de Mello CR, Chou SC, Yanagi SN, Gomes JL (2014) Assessing climate change impacts on Upper Grande River Basin hydrology, Southeast Brazil. Int J Climatol. doi:10.1002/joc.4038

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for funding the project “Global climate changes and their impacts on the coastal zone: models, indicators, civil constructions, and mitigation/adaptation factors—Rede Litoral Norte SP (417/2010).” The authors also acknowledge the FCO GOF-Dangerous Climate Change DCC project from the UK and the UNDP Project BRA/05/G31. We would also like to thank the PhD student Vitor Baccarin Zanetti, who supported us with the ArcGIS® work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadiane Smaha Kruk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tschöke, G.V., Kruk, N.S., de Queiroz, P.I.B. et al. Comparison of two bias correction methods for precipitation simulated with a regional climate model. Theor Appl Climatol 127, 841–852 (2017). https://doi.org/10.1007/s00704-015-1671-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1671-z

Keywords

Navigation