Skip to main content
Log in

Spatial interpolation of precipitation indexes in Sierra Nevada (Spain): comparing the performance of some interpolation methods

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The objective of this paper is to examine the spatial distribution of several precipitation indexes in Sierra Nevada, Spain: mean annual number of wet days (R ≥ 1 mm), mean annual number of heavy rainy days (R ≥ 10 mm) and mean annual number of very heavy precipitation days (R ≥ 20 mm) and test the performance of several interpolation methods using these variables. In total, 17 univariate and multivariate methods were tested. A set of 36 metereological stations distributed in Sierra Nevada and neighbouring areas was analysed in this study. The original data did not followed the normal distribution; thus, a logarithm was applied to data meet normality purposes. Interpolator’s performance was assessed using the root mean square error generated from cross-validation. The results showed that the mean annual R ≥ 10 mm and R ≥ 20 mm have a higher variability than R ≥ 1 mm. While the elevation and longitude did not show a significant correlation with the studied indexes, the latitude (i.e. distance to the sea) showed a significant negative correlation. The regressions carried out confirmed that elevation was the covariate with higher capacity to explain the variability of the indexes. The incorporation of elevation and longitude slightly increased the explanation capacity of the models. The data of LogR ≥ 1 mm, LogR ≥ 10 mm and LogR ≥ 20 mm displayed a clustered pattern, especially the last two indexes that also showed a strong spatial dependency attributed to the effects of local topography, slope, aspect and valley orientation. The best fitted variogram model to LogR ≥ 1 mm was the linear one while for the LogR ≥ 10 mm and LogR ≥ 20 mm, the Gaussian was the most appropriate. The best interpolator for LogR ≥ 1 mm was the local polinomyal with the power of 1, whereas for LogR ≥ 10 mm and LogR ≥ 20 mm, regression kriging (ROK) using as auxiliary variables the elevation, latitude and longitude was the most accurate. ROK methods significantly improved the interpolations accuracy, especially in LogR ≥ 10 mm and LogR ≥ 20 mm. Nevertheless, the covariates, when used as auxiliary information in ordinary kriging, did not improve the precision of the interpolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akkala A, Devabhaktuni V, Kumar A (2010) Interpolation techniques and associated software for environmental data. Environ Prog Sustain Energy 29:134–141. doi:10.1002/ep

    Article  Google Scholar 

  • Amorim Borges P, Franke J, Tanaka da Anunciacao YM, Weiss H, Bernhofer C (2015) Comparison of interpolation methods for the estimation of precipitation distribution in Distrito Federal, Brazil. Theor Appl Climatol doi:. doi:10.1007/s00704-014-1359-9

    Google Scholar 

  • Andreo B, Linan C, Carrasco F, Jimenez de Cisneros C, Caballero F, Mudry J (2004) Influence of rainfall quantity on the isotopic composition (18O and 2H) of water in mountaineous areas. Application for groundwater research in the Yunquera-Nieves karst aquifers (S Spain). Appl Geochem 19:561–574. doi:10.1016/j.apgeochem.2003.08.002

    Article  Google Scholar 

  • Ashiq MW, Zhao C, Ni J, Akhtar M (2010) GIS-based high-resolution spatial interpolation of precipitation in mountain-plain areas of upper Pakistan for regional climate change impact studies. Theor Appl Climatol 99:239–253. doi:10.1007/s00704-009-0140-y

    Article  Google Scholar 

  • Baeriswyl PA, Rebetez M (1997) Regionalization of precipitation in Switzerland by means of principal component analysis. Theor Appl Climatol 58:31–41. doi:10.1007/BF00867430

    Article  Google Scholar 

  • Bajat B, Pejovic M, Lukovic J, Manojlovic P, Ducic V, Mustafic (2013) Mapping average annual precipitation in Serbia (1961–1990) by using regression kriging. Theor Appl Climatol 112: 1–13. doi: 10.1007/s00704-012-0702-2

  • Bargoui ZK, Chebbi A (2009) Comparison of two kriging interpolation methods applied to spatio-temporal rainfall. J Hydrol 365:56–73. doi:10.1016/j.jhydrol.2008.11.025

    Article  Google Scholar 

  • Basit A, Bell GD, Meentemeyer V (1994) Statistical relationships between topography and precipitation patterns. J Climate 7: 1305–1315. doi: http://dx.doi.org/10.1175/1520-0442(1994)007<1305:SRBTAP>2.0.CO;2

  • Begueria S, Vicente-Serrano SM (2006) Mapping hazard of extreme rainfall by peaks over a threshold extreme value analysis and spatial regression techniques. J Appl Metereol Climatol 45: 108–124. doi: http://dx.doi.org/10.1175/JAM2324.1

  • Boer EP, Beurs KMD, Hardkamp AD (2001) Kriging and thin plate splines for mapping climate variables. Int J Appl Earth Obs Geoinf 3:146–154

    Article  Google Scholar 

  • Bostan PA, Heivelink GBM, Akyurek SZ (2012) Comparison of regression and kriging techniques for mapping the average annual precipitation in Turkey. Int J Appl Earth Obs Geoinf 19:115–126. doi:10.1016/j.jag.2012.04.010

    Article  Google Scholar 

  • Brunetti M, Buffoni L, Maugeri M, Nanni T (2000) Precipitation intensity trends in northern Italy. Int J Climatol 30:1017–1031. doi:10.1002/1097-0088(200007)20:9<1017::AID-JOC515>3.0.CO;2-S

    Article  Google Scholar 

  • Brus D, Heuvelink G (2007) Optimization of sample patterns for universal kriging of environmental variables. Geoderma 138:86–95. doi:10.1016/j.geoderma.2006.10.016

    Article  Google Scholar 

  • Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF, Konopka AE (1994) Field-scale variability of soil properties in Central Iowa soils. Soil Sci Soc Am J 58:1501–1511. doi:10.2136/sssaj1994.03615995005800050033x

  • Carrera-Hernández JJ, Gaskin SJ (2007) Spatio temporal analysis of daily precipitation and temperature and temperature in Basin of Mexico. J Hidrol 336:231–249. doi:10.1016/j.jhydrol.2006.12.021

    Article  Google Scholar 

  • Cosma BS, Richard E, Miniscloux F (2002) The role of small-scale orographic features in the spatial distribution of precipitation. Q J R Metereol Soc 28:75–92. doi:10.1256/00359000260498798

    Article  Google Scholar 

  • Costa AC, Soares A (2009) Trends in extreme precipitation indexes derived from a daily rainfall database for south of Portugal. Int J Climatol 29:1956–1975. doi:10.1002/joc.1834

    Article  Google Scholar 

  • Costa MJ, Salgado R, Santos D, Levizzani V, Bortoli D, Silva AM, Pinto P (2010) Modelling of orographic precipitation over Iberia: a springtime case study. Adv Geosci 25:103–110. doi:10.5194/adgeo-25-103-2010

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12:53–64. doi:10.1046/j.1466-822X.2003.00322.x

    Article  Google Scholar 

  • Diodato N, Ceccarelli M (2005) Interpolation processes using multivariate geostatistics for mapping climatological precipitation mean in the Sannio Mountains (Southern Italy). Earth Surf Process Landf 30:259–268. doi:10.1002/esp.1126

    Article  Google Scholar 

  • Fernández CJ, Bravo JI (2007) Evaluation of diverse geometric and geostatistical estimation methods applied to annual precipitation in Asturias (NW Spain). Nat Resour Res 16:209–218. doi:10.1007/s11053-007-9053-6

    Article  Google Scholar 

  • Frei C, Schar C (1998) A precipitation climatology of the alps from high resolution rain-gauge observations. Int J Climatol 18:873–990. doi:10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9

    Article  Google Scholar 

  • Gallego MC, Trigo RM, Vaquero JM, Brunet M, Garcia JA, Sigro J, Valente MA (2011) Trends in frequency indexes of daily precipitation over Iberian Peninsula during the last century. J Geophys Res-Atmos 116: D02109, doi:10.1029/2010JD014255

  • Garcia JA, Gallego MC, Serrano A, Vaquero JM (2007) Trends in block-seasonal extreme rainfall over Iberian Peninsula in the second half of the Twentieth century. J Climate 20: 113–130. doi: http://dx.doi.org/10.1175/JCLI3995.1

  • Giorgi F, Lionello P (2008) Climate change predictions for the Mediterranean Region. Glob Planet Chang 63:90–104. doi:10.1016/j.gloplacha.2007.09.005

    Article  Google Scholar 

  • Goovaerts P (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hydrol 228:113–129. doi:10.1016/S0022-1694(00)00144-X

    Article  Google Scholar 

  • Guan H, Wilson JL, Makhnin O (2005) Geostatistical mapping of mountain precipitation incorporating autosearched effects of terrain and climate characteristics. J Hydrometeor 6: 1018–1031. doi: http://dx.doi.org/10.1175/JHM448.1

  • Hay L, Viger R, McCabe G (1998) Precipitation interpolation in mountaineous regions using multiple linear regression. Hydrology, water resources in headwaters. IAHS Publications 248:33–38

    Google Scholar 

  • Hengl T, Heuvelink GBM, Rossiter DG (2007) About regression-kriging: from equations to case studies. Comput Geosci 33:1301–1315. doi:10.1016/j.cageo.2007.05.001

    Article  Google Scholar 

  • Herbst M, Diekkruger B (2002) The influence of spatial structure of soil properties on water balance modelling in a microscale catchment. Phys Chem Earth 27:701–710. doi:10.1016/S1474-7065(02)00054-2

    Article  Google Scholar 

  • Hevesi JA, Istok JD, Flint AL (1992) Precipitation estimation in Mountaineous terrain using multivariate statistics. Part I Structural Analysis. J Appl Metereol 31: 661–676. doi: http://dx.doi.org/10.1175/1520-0450(1992)031<0661:PEIMTU>2.0.CO;2

  • Hidalgo-Muñoz JM, Argueso D, Gamiz-Fortis SR, Esteban-Parra Y, Castro-Diez Y (2011) Trends of extreme precipitation and associated synoptic patterns over the southern Iberian Peninsula. J Hydrol 409:497–511. doi:10.1016/j.jhydrol.2011.08.049

    Article  Google Scholar 

  • Hunink JH, Immerzeel WW, Droogers P (2014) A high-resolution precipitation 2 step mapping procedure (HiP2P): development and application to a tropical mountainous area. Remote Sens Environ 140:179–188. doi:10.1016/j.rse.2013.08.036

    Article  Google Scholar 

  • IPCC (2007) Intergovernamental panel on climate change. World Meteorological Organization

  • IPCC (2014) Intergovernamental panel on climate change. World Meteorological Organization

  • Iqbal J, Thomasson JA, Jenkins JN, Owens PR, Whisler FD (2005) Spatial variability analysis of soil physical properties of alluvial soil. Soil Sci Soc Am J 69:1338–1350. doi:10.2136/sssaj2004.0154

    Article  Google Scholar 

  • Kieffer Weisse A, Bois P (2001) Topographic effects on statistical characteristics of heavy rainfall characteristics and mapping in the French Alps. J Appl Metereol 40: 720–740. doi: http://dx.doi.org/10.1175/1520-0450(2001)040<0720:TEOSCO>2.0.CO;2

  • Klein Tank AMG, Konnen GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J Climate 16: 3665–3680. doi: http://dx.doi.org/10.1175/1520-0442(2003)016<3665:TIIODT>2.0.CO;2

  • Klein Tank AMG, Winjngaard JB, Konnen GP, Bohm R, Demaree G, Gocheva A, Mileta M, Pashiardis A, Hejkrlik L, Kern-Hansen C, Heino R, Bessemoulin P, Muller-Westermeier G, Tzanakou M, Szalai S, Palsdottir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, Van Engelen AFV, Forland E, Mietus M, Coelho F, Mares C, Kazuvaev V, Nieplova E, Cegnar T, Antonio Lopez J, Dahlstrom B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander LV, Petrovic P (2002) Daily dataset of 20th-century surface air temperatures and precipitation series for the European Climate Assessment. Int J Climatol 22:1441–1453. doi:10.1002/joc.773

    Article  Google Scholar 

  • Li Y (2010) Can spatial prediction of soil organic matter contents at various sampling scales be improved by using regression kriging with auxiliary information. Geoderma 159:63–75. doi:10.1016/j.geoderma.2010.06.017

    Article  Google Scholar 

  • Lloyd CD (2005) Assessing the effect of integrating of integration elevation data into estimation of monthly precipitation in Great Britain. J Hydrol 308:128–150. doi:10.1016/j.jhydrol.2004.10.026

    Article  Google Scholar 

  • López-Moreno JI, Vicente-Serrano SM, Angulo-Martinez M, Begueria S, Kenawy A (2010) Trends in daily precipitation on the northeastern Iberian Peninsula. Int J Climatol 30:1026–1041. doi:10.1002/joc.1945

    Google Scholar 

  • López-Moreno JJ, Vicente-Serrano SM, Moran-Tejeda E, Lorenzo-Lacruz J, Kenawi A, Beniston M (2011) Effects of North Atlantic Oscilation (NAO) on combined temperatures and precipitation winter modes in the Mediterranean mountains. Glob Planet Chang 77:62–76. doi:10.1016/j.gloplacha.2011.03.003

    Article  Google Scholar 

  • Marquínez J, Lastra J, Garcia P (2003) Estimation models for precipitation in mountainous regions: the use of GIS and multivariate analysis. J Hydrol 270:1–11. doi:10.1016/S0022-1694(02)00110-5

    Article  Google Scholar 

  • Martín-Vide J, López-Bustins J (2006) The western Mediterranean oscilation and rainfall in the Iberian Peninsula. Int J Climatol 26:1455–1475. doi:10.1002/joc.1388

    Article  Google Scholar 

  • McBratney AB, Odeh IOA, Bishop TFA, Dunbar MS, Shatar TM (2000) An overview of pedometric techniques for use in soil survey. Geoderma 97:293–327. doi:10.1016/S0016-7061(00)00043-4

    Article  Google Scholar 

  • Meng Q, Liu Z, Borders B (2013) Assessment of kriging for spatial interpolation—comparison of seven GIS interpolation methods. Cartogr Geogr Inf Sci 40:28–39. doi:10.1080/15230406.2013.762138

    Article  Google Scholar 

  • Meusburger K, Steel A, Panagos P, Montanarella L, Alewell C (2012) Spatial and temporal variability of rainfallerosivity factor for Switzerland. Hydrol Earth Syst Sci 16:167–177. doi:10.5194/hess-16-167-2012

    Article  Google Scholar 

  • Minder JR, Durran DR, Roe GH, Anders AM (2008) The climatology of small-scale orographic precipitation over the Olympic mountains: patterns and processes. Q J R Metereol Soc 134:817–839. doi:10.1002/qj.258

    Article  Google Scholar 

  • Moberg A, Jones P (2005) Trends in indexes for extremes in daily precipitation and temperature in central and western Europe. Int J Climatol 25:1149–1171. doi:10.1002/joc.1163

    Article  Google Scholar 

  • Moral FJ (2010) Comparison of different geostatistical approaches to map climate variables: application to precipitation. Int J Climatol 30:620–631. doi:10.1002/joc.1913

    Google Scholar 

  • Mubiru J, Karume K, Majaliwa M, Banda EJKB, Otiti T (2007) Interpolating methods for solar radiation in Uganda. Theor Appl Climatol 88:259–263. doi:10.1007/s00704-006-0248-2

    Article  Google Scholar 

  • Odeh IOA, McBratney AB, Chittleborough DJ (1994) Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma 63:197–214. doi:10.1016/0016-7061(94)90063-9

    Article  Google Scholar 

  • Oliva M, Moreno I (2008) Sierra Nevada, nexo entre dos patrones de teleconexión: la NAO y la WeMO.. In: Sigró J, Brunet M, Aguilar E (ed) Cambio Climático Regional y sus Impactos. Publicaciones de la Asociación Española de Climatología, Tarragona, Serie A (6):199–208

  • Oliva M, Schulte L, Gómez Ortiz A (2011) The role of aridification in constraining the elevation range of Holocene solifluction processes and associated landforms in the periglacial belt of the Sierra Nevada (Southern Spain). Earth Surf Process Landf 36:1279–1291. doi:10.1002/esp.2116

    Article  Google Scholar 

  • Oliva, M (2009). “Holocene alpine environments in Sierra Nevada (Southern Spain)”. PhD thesis. University of Barcelona

  • Pereira P, Cerda A, Ubeda X, Mataix-Solera J, Arcenegui V, Zavala LM (2015) Modelling the impacts of wildfire on ash thickness in a short-term period. Land Degrad Develop 26:180–192. doi:10.1002/ldr.2195

    Article  Google Scholar 

  • Pereira P, Cerda A, Ubeda X, Mataix-Solera J, Martin D, Jordan A, Burguet M (2013) Spatial models for monitoring the spatio-temporal evolution of ashes after a fire—a case study in Lithuania. Solid Earth 4:153–165. doi:10.5194/se-4-153-2013

    Article  Google Scholar 

  • Pereira P, Oliva M, Baltrenaite E (2010) Modelling extreme precipitation in hazardous mountainous areas. Contribution to Landscape planning and Environmental Management J Environ Eng Landsc 18:329–342. doi:10.3846/jeelm.2010.38

    Article  Google Scholar 

  • Pérez-Fiz, F. & Boscolo, R. (ed) (2010) CLIVAR - Clima en España: pasado, presente y futuro. Informe de Evaluación del Cambio Climático Regional, Ministerio de Medio Ambiente y Medio Rural y Marino, Ministerio de Ciencia e Innovación, Madrid, pp 25-42

  • Plouffe CCF, Robertson C, Chandrapala L (2015) Comparing interpolation techniques for monthly rainfall mapping using multiple evaluation criteria and auxiliary data sources: a case study of Sri Lanka. Environ Model Softw 67:57–71. doi:10.1016/j.envsoft.2015.01.011

    Article  Google Scholar 

  • Preudhome C, Reed DW (1998) Relationships between extreme precipitation and topography in a mountaineous region. A case study in Scotland. Int J Climatol 18:1439–1453. doi:10.1002/(SICI)1097-0088(19981115)18:13<1439::AID-JOC320>3.0.CO;2-7

    Article  Google Scholar 

  • Queralt S, Hernandez E, Barriopedro D, Gallego D, Ribera P, Casanova C (2009) North Atlantic Oscilation influence on weather types associated with total and extreme precipitation events in Spain. Atmos Res 94:675–683. doi:10.1016/j.atmosres.2009.09.005

    Article  Google Scholar 

  • Ranhao S, Baiping Z, Jing T (2008) A multivariate regression model for predicting precipitation in the Daquing Mountains. Mt Res Dev 28:318–325. doi:10.1659/mrd.0944

    Article  Google Scholar 

  • Rodrigo FS (2010) Changes in the probability of extreme daily precipitation observed from 1951 to 2002 in the Iberian Peninsula. Int J Climatol 30:1512–1525

    Google Scholar 

  • Rodrigo FS, Trigo RM (2007) Trends in daily rainfall in the Iberian Peninsula from 1951 to 2002. Int J Climatol 27:513–529. doi:10.1002/joc.1409

    Article  Google Scholar 

  • Ruelland D, Ardoin-Bardin S, Billen G, Servat E (2008) Sensitivity of a lumped and semi-distributed hydrological model to several methods of rainfall interpolation on a large basin of Africa. J Hydrol 361:97–117. doi:10.1016/j.jhydrol.2008.07.049

    Article  Google Scholar 

  • Schmidli J, Frei C (2005) Trends of heavy precipitation and wet and dry spells in Switzerland during the 20th century. Int J Climatol 25:753–771. doi:10.1002/joc.1179

    Article  Google Scholar 

  • Scott LM, Janikas M (2010) Spatial statistics in ArcGis. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis: software tools, methods and applications, Springer-Verlag;Heidelberg, Germany, pp 27–41

  • Sotillo MG, Ramis C, Romero R, Alonso S, Homar V (2003) Role of orography in the spatial distribution of precipitation over the Spanish Mediterranean zone. Clim Res 23:247–261

    Article  Google Scholar 

  • Tatar A, Shokrollahi A, Mesbah M, Rashid S, Arabloo M, Bahadori A (2013) Implementing radial basis function for modelling CO2- reservoir oil minimum miscibility pressure. J Nat Gas Sci Eng 15:82–92. doi:10.1016/j.jngse.2013.09.008

    Article  Google Scholar 

  • Triantafilis J, Odeh IOA, McBratney AB (2001) Five geostatistical models to predict soil salinity from electromagnetic induction data across irrigated cotton. Soil Sci Am J 65:869–878

    Article  Google Scholar 

  • Viana H, Aranha J, Lopes D, Cohen WB (2012) Estimation of crown biomass of Pinus pinaster stands and schrubland above-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models. Ecol Model 226:22–35. doi:10.1016/j.ecolmodel.2011.11.027

    Article  Google Scholar 

  • Vicente-Serrano SM, Begueria S, Lopez-Moreno JI, Garcia-Vera MA, Stepanek P (2010) A complete daily precipitation database for northeast Spain: reconstruction, quality control, and homogeneity. Int J Climatol 30:1146–1163. doi:10.1002/joc.1850

    Article  Google Scholar 

  • Vicente-Serrano SM, Saz-Sanchez MA, Cuadrat JM (2003) Comparative analysis of interpolation methods in the middle Ebro valley (Spain): application to annual precipitation and temperature. Clim Res 24:161–180

    Article  Google Scholar 

  • Vicente-Serrano SM, Trigo RM, Lopez-Moreno JI, Liberato ML, Lorenzo-Lscruz J, Begueria S, Moran-Tejeda E, Kenawy AE (2011) Extreme winter precipitation in Iberian Peninsula in 2010: anomalies, driving mechanisms and future projections. Clim Res 46:51–65. doi:10.3354/cr00977

    Article  Google Scholar 

  • Wanner H, Holzhauser H, Pfister C, Zumbühl H (2000) Interannual to century scale climate variability in the European Alps. Erdkunde 54:62–69

    Article  Google Scholar 

  • Wotling G, Bouvier C, Danloux J, Fritsch JM (2000) Regionalization of extreme precipitation distribution using principal components of the topographical environment. J Hydrol 233:86–101. doi:10.1016/S0022-1694(00)00232-8

    Article  Google Scholar 

  • Yilmaz HM (2007) The effect of interpolation methods in surface definition: an experimental study. Earth Surf Process Landf 32:1346–1361. doi:10.1002/esp.1473

    Article  Google Scholar 

  • Zhu Q, Lin HS (2010) Comparing ordinary kriging and regression kringing for soil properties in contrasting landscapes. Pedosphere 20:594–606. doi:10.1016/S1002-0160(10)60049-5

    Article  Google Scholar 

Download references

Acknowledgments

The second author acknowledges the AXA Research Fund for granting a postdoctoral fellowship during which the climate data was statistically treated. We are also grateful to the Agencia Estatal de Meteorología (AEMET) for providing the climate dataset analysed in this paper. The authors acknowledge the helpful suggestions of two anonymous reviewers that substantially increased the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Oliva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, P., Oliva, M. & Misiune, I. Spatial interpolation of precipitation indexes in Sierra Nevada (Spain): comparing the performance of some interpolation methods. Theor Appl Climatol 126, 683–698 (2016). https://doi.org/10.1007/s00704-015-1606-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1606-8

Keywords

Navigation