Skip to main content
Log in

Spatiotemporal distribution of reference evapotranspiration in the Republic of Moldova

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The main objectives of this study are to investigate the spatial distribution and changes in reference evapotranspiration (ET 0) in the Republic of Moldova. Monthly data of maximum and minimum air temperature, sunshine duration, relative humidity, and wind speed recorded at 14 weather stations over a period of 52 years (1961–2012) were used. ET 0 was computed based on the FAO Penman-Monteith formula. Annual and growing seasons of winter wheat and maize time series were analyzed for the 1981–2012 period as well as for the 1961–1980. The trends and their statistical significance in ET 0 series were detected using Mann-Kendall test and T test, while the magnitude of the trends was estimated using Sen’s slope and linear regression. For the 1981–2012 period, the results indicated that annual ET 0 had a positive trend in more than 90 % of the time series according to both parametric and nonparametric methods. The magnitude of positive trends in annual ET 0 series ranged between 13.80 and 72.07 mm/decade. In the growing seasons of winter wheat and maize, the results are similar to those found in the annual series. Significant decreasing trends dominated over the 1961–1980 period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen RG, Periera LS, Raes D, Smith M (1998) Crop evapotranspiration: guideline for computing crop water requirement. FAO Irrigation and drainage Paper No. 56. FAO, Rome

    Google Scholar 

  • Bandyopadhyay B, Bhadra A, Raghuwnshi NS, Singh R (2009) Temporal trends in estimates of reference evapotranspiration over India. J Hydrol Eng 14(5):508–515

    Article  Google Scholar 

  • BNSRM (2012) Statistical yearbook of the Republic of Moldova. Tipografia Centrală Publishing House, Chişinău

    Google Scholar 

  • Bois B, Pieri P, Van Leeuwen C, Gaudillere JP (2005) Sensitivity analysis of the Penman–Montheith evapotranspiration formula and comparison of empirical methods used in viticulture soil water balance. Proceedings of the XIV International GESCO Viticulture Congress. Geisenheim, 187–193

  • Cohen S, Ianetz A, Stanhill G (2002) Evaporative climate changes at bet Dagan Israel, 1964–1998. Agric For Meteorol 111:83–91

    Article  Google Scholar 

  • Corobov R, Sheridan S, Overcenco A, Terinte N (2010) Air temperature trends and extremes in Chisinau (Moldova) as evidence of climate change. Clim Res 42:247–256

    Article  Google Scholar 

  • Croitoru AE, Piticar A, Dragotă CS, Burada DC (2013) Recent changes in reference evapotranspiration in Romania. Global Planet Chang 111:127–136. doi:10.1016/j.globplacha.2013.09.004

    Article  Google Scholar 

  • Dalezios NR, Loukas A, Bampzelis D (2002) Spatial variability of reference evapotranspiration in Greece. Phys Chem Earth 27:1031–1038

    Article  Google Scholar 

  • Domenico Palumbo A, Vitale D, Campi P, Mastrorilli M (2011) Time trend in reference evapotranspiration: analysis of a long series of agrometeorological measurements in Southern Italy. Irrig Drain Syst 25(4):395–411

    Article  Google Scholar 

  • Espadafor M, Lorite IJ, Gavilán P, Berengena J (2011) An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain. Agric Water Manag 98:1045–1061

    Article  Google Scholar 

  • Fan ZX, Thomas A (2013) Spatiotemporal variability of reference evaporation and its contributing climatic factors in Yunnan Province, SW China, 1961–2004. Clim Chang 116:309–325. doi:10.1007/s10584-012-0479-4

    Article  Google Scholar 

  • Hobbins MT, Ramirez JA, Brown TC (2004) Trends in pan evaporation and actual evapotranspiration across congterminous US: paradoxical or complementary? Geophys Res Lett 31, L13503. doi:10.1029/2004GL019846

    Article  Google Scholar 

  • Hydrometeorological Centre (1982) Agroclimatic resources of Soviet Republic of Moldavia. Gidrometeoizdat, Leningrad, p 198

    Google Scholar 

  • Irmak S, Kabenge I, Skaggs KE, Mutiibwa D (2012) Trend and magnitude of changes in climate variables and reference evapotranspiration over 116-yr period in the Platte River Basin, central Nebraska-USA. J Hydrol 420–421:228–244

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, London

    Google Scholar 

  • Maeda EE, Wiberg DA, Pellikka PKE (2011) Estimating reference evapotranspiration using remote sensing and empirical models in a region with limited ground data availability in Kenya. Appl Geogr 31:251–258. doi:10.1016/j.apgeog.2010.05.011

    Article  Google Scholar 

  • Mann HB (1945) Non-parametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Moratiel R, Durán JM, Snyder RL (2010) Responses of reference evapotranspiration to changes in atmospheric humidity and air temperature in Spain. Clim Res 44:27–40. doi:10.3354/cr00919

    Article  Google Scholar 

  • Potop V (2011) Evolution of drought severity and its impact on corn in the Republic of Moldova. Theor Appl Climatol 105:469–483. doi:10.1007/s00704-011-0403-2

    Article  Google Scholar 

  • Roderick ML, Farquhar GD (2002) The cause of decreased pan evaporation over the past 50 years. Science 298:1410–1411

    Google Scholar 

  • Roderick ML, Farquhar GD (2004) Change in Australian pan evaporation from 1970 to 2002. Int J Climatol 24:1077–1090

    Article  Google Scholar 

  • Roderick ML, Farquhar GD (2005) Change in New Zealand pan evaporation since the 1970s. Int J Climatol 25:2031–2039

    Article  Google Scholar 

  • Roderick ML, Hobbins MT, Farquhar GD (2009) Pan evaporation trends and the terrestrial water balance. I. Principles and observations. Geogr Compass 13:746–760. doi:10.1111/j.1749-8198.2008.00213.x

    Article  Google Scholar 

  • Salmi T, Maatta A, Anttila P, Ruoho-Airola T, Amnell T (2002) Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen’s slope estimates – The Excel template application MAKESENS. Publications on Air Quality 31: Report Code FMIAQ-31

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Song ZW, Zhang HL, Snyder RL, Anderson FE, Chen F (2010) Distribution and trends in reference evapotranspiration in the North China Plain. J Irrig Drain Eng 136(4):240–247

    Article  Google Scholar 

  • Tabari H, Marofi S, Aeini A, Hosseinzadeh Talaee P, Mohammadi K (2011) Trend analysis of reference evapotranspiration in the western half of Iran. Agric For Meteor 151:128–136. doi:10.1016/j.agrformet.2010.09.009

    Article  Google Scholar 

  • Tabari H, Aeini A, Hosseinzadeh Talaee P, Shifteh Some’e B (2012) Spatial distribution and temporal variation of reference evapotranspiration in arid and semi-arid regions of Iran. Hydrol Process 26:500–512. doi:10.1002/hyp.8146

    Article  Google Scholar 

  • Vanderlinden K, Giráldez JV, Van Meirvenne M (2008) Spatial estimation of reference evapotranspiration in Andalusia, Spain. J Hydrometeorol 9:242–255

    Article  Google Scholar 

  • Wang Y, Jiang T, Bothe O, Fraedrich K (2007) Changes of pan evaporation and reference evaporation in the Yangtze River basin. Theor Appl Climatol 90:13–23

    Article  Google Scholar 

  • Xu CY, Gong L, Jiang T, Chen D, Singh VP (2006) Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J Hydrol 327:81–93. doi:10.1016/j.hydrol.2005.11.029

    Article  Google Scholar 

  • Yu PS, Yang TC, Chou CC (2002) Effects of climate change on evapotranspiration from paddy fields in southern Taiwan. Clim Chang 54:165–179

    Article  Google Scholar 

  • Zaninović K, Gajić-Čapka M (2000) Changes in components of the water balance in the Croatian Lowlands. Theor Appl Climatol 65:111–117

    Article  Google Scholar 

  • Zhang Y, Liu C, Tang Y, Yang Y (2007) Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. J Geophys Res 112, D12110. doi:10.1029/2006JD008161

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the State Hydrometeorological Service of the Republic of Moldova for providing the meteorological data. The author, Bistricean, Petrut-Ionel, would like to specify that this paper has been financially supported within the project entitled “SOCERT. Knowledge society, dynamism through research,” contract number POSDRU/159/1.5/S/132406. This project is co-financed by European Social Fund through Sectoral Operational Programme for Human Resources Development 2007–2013. Investing in people!

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Piticar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piticar, A., Mihăilă, D., Lazurca, L.G. et al. Spatiotemporal distribution of reference evapotranspiration in the Republic of Moldova. Theor Appl Climatol 124, 1133–1144 (2016). https://doi.org/10.1007/s00704-015-1490-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1490-2

Keywords

Navigation