Skip to main content

Advertisement

Log in

Change in diurnal variations of meteorological variables induced by anthropogenic aerosols over the North China Plain in summer 2008

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This study investigates the impacts of all anthropogenic aerosols and anthropogenic black carbon (BC) on the diurnal variations of meteorological variables in the atmospheric boundary layer over the North China Plain (NCP) during June to August 2008, using a coupled meteorology and chemistry model (WRF-Chem). The results of the ensemble numerical experiments show that surface air temperature decreases by about 0.6 to 1.2 K with the maximum decrease over the Beijing urban area and the southern part of Hebei province, and the surface relative humidity (RH) increases by 2–4 % owing to all anthropogenic aerosols. On the contrary, anthropogenic BC induces a small change of temperature and RH at surface. Averaged for Beijing, Tianjin, and Hebei province (BTH region) and High Particle Concentration (HPC) periods when PM2.5 surface concentration is more than 60 μg m−3 and daily AOD is more than 0.9, all anthropogenic aerosols decrease air temperature under 850 hPa and increase it between 500 and 850 hPa, while anthropogenic BC increases it for whole atmosphere. The maximum changes occur at 08:00–20:00 (local time). Aerosol-induced surface energy and diabatic heating change leads to a cooling at the surface and in the lower atmosphere and a warming in the middle troposphere at 08:00–17:00, with reversed effects at 20:00–05:00. BC cools the atmosphere at the surface and warms the atmosphere above for the whole day. As a result, the equivalent potential temperature profile change shows that the lower atmosphere is more stable at 08:00 and 14:00. All anthropogenic aerosols decrease the surface wind speed by 20–60 %, while anthropogenic BC decreases the wind speed by 10–40 % over the NCP with the maximum decrease at 08:00. The aerosol-induced stabilization of the lower atmosphere favors the accumulation of air pollutants and thus contributes to deterioration of visibility and fog–haze events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdul-Razzak H, Ghan SJ (2000) A parameterization of aerosol activation 2. Multiple aerosol types. J Geophys Res-Atmos 105(D5):6837–6844

    Article  Google Scholar 

  • Ackermann IJ, Hass H, Memmesheimer M, Ebel A, Binkowski FS, Shankar U (1998) Modal aerosol dynamics model for Europe: development and first applications. Atmos Environ 32:2981–2999

    Article  Google Scholar 

  • Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 24:51227–51230

    Google Scholar 

  • Bond TC et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res 118:5380–5552

    Google Scholar 

  • Chan CK, Yao X (2008) Air pollution in mega cities in China. Atmos Environ 42(1):1–42

  • Cheng T, Chen H, Gu X, Yu T, Guo J, Guo H (2012) The inter-comparison of MODIS, MISR and GOCART aerosol products against AERONET data over China. J Quant Spectrosc Radiat Transf 113:2135–2145

    Article  Google Scholar 

  • Diner D, Abdou W, Bruegge C, Conel J, Crean K, Gaitley B, Helmlinger M, Kahn R, Martonchik J, Pilorz S (2001) MISR aerosol optical depth retrievals over southern Africa during the SAFARI-2000 Dry Season Campaign. Geophys Res Lett 28:3127–3130

    Article  Google Scholar 

  • Diner D, Martonchik J, Kahn R (2005) Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land. Remote Sens Environ 94:155–171

    Article  Google Scholar 

  • Dubovik O, King M (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J Geophys Res 105:20673–20696

    Article  Google Scholar 

  • Dubovik O, Holben B, Eck T, Smirnov A, Kaufman Y, King M, Tanre D, Slutsker I (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci 59:590–608

    Article  Google Scholar 

  • Gao Y, Liu X, Zhao C, Zhang M (2011) Emission controls versus meteorological conditions in determining aerosol concentrations in Beijing during the 2008 Olympic Games. Atmos Chem Phys 11:12437–12451

    Article  Google Scholar 

  • Gao Y, Zhao C, Liu X, Zhang M, Leung RL (2014) WRF-Chem simulations of aerosols and anthropogenic aerosol radiative forcing in East Asia. Atmos Environ 92:250–266

    Article  Google Scholar 

  • Ge J, Su J, Ackerman T, Fu Q, Huang J, Shi J (2010) Dust aerosol optical properties retrieval and radiative forcing over northwestern China during the 2008 China-U.S. joint field experiment. J Geophys Res 115:D00K12

    Article  Google Scholar 

  • Ghan SJ, Easter RC, Hudson J, Breon F (2001) Evaluation of aerosol indirect radiative forcing in MIRAGE. J Geophys Res 106:5317–5334

    Article  Google Scholar 

  • Grell GA, Peckham SE, Schmitz R, McKeen SA, Frost G, Skamarock WC, Eder B (2005) Fully coupled “online” chemistry within the WRF model. Atmos Environ 39:6957–6975

    Article  Google Scholar 

  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6:3181–3210

    Article  Google Scholar 

  • Gustafson WI Jr, Chapman EG, Ghan SJ, Easter RC, Fast JD (2007) Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004. Geophys Res Lett 34, L19809

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102:6831–6864

    Article  Google Scholar 

  • Holben B et al (1998) AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16

    Article  Google Scholar 

  • Hsu N, Tsay S, King M, Herman J (2006) Deep blue retrievals of Asian Aerosol Properties during ACE-Asia. IEEE Trans Geosci Remote Sens 44:3180–3195

    Article  Google Scholar 

  • Huang Y, Dickinson RE, Chameides WL (2006) Impact of aerosol indirect effect on surface temperature over East Asia. Proc Natl Acad Sci 103:4371–4376

    Article  Google Scholar 

  • Kaufman Y, Tanre D, Remer L, Vermote E, Chu A, Holben B (1997) Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J Geophys Res 102:17051–17067

    Article  Google Scholar 

  • Levy R, Remer L, Tanre D, Kaufman Y, Ichoku C, Holben B, Livingston J, Russell P, Maring H (2003) Evaluation of the moderate-resolution imaging spectroradiometer (MODIS) retrievals of dust aerosol over the ocean during PRIDE. J Geophys Res 108, D198594

    Google Scholar 

  • Li Z, Zhao X, Kahn R, Mishchenko M, Remer L, Lee K (2009) Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective. Ann Geophys 27:2755–2770

    Article  Google Scholar 

  • Liu Y, Daum PH, McGraw R (2005) Size truncation effect, threshold behavior, and a new type of autoconversion parameterization. Geophys Res Lett 32, L11811

    Article  Google Scholar 

  • Liu H, Zhang L, Wu J (2010) A modeling study of the climate effects of sulfate and carbonaceous aerosols over China. Adv Atmos Sci 27:1276–1288

    Article  Google Scholar 

  • McKeen SA, Wotawa G, Parrish DD, Holloway JS, Buhr MP, Hubler G, Fehsenfeld FC, Meagher JF (2002) Ozone production from Canadian wildfires during June and July of 1995. J Geophys Res 107(D14):4192

    Article  Google Scholar 

  • McKeen S et al (2007) Evaluation of several PM2.5 forecast models using data collected during the ICARTT/NEAQS 2004 field study. J Geophys Res 112:D10S20

    Article  Google Scholar 

  • Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253

    Article  Google Scholar 

  • Prasad A, Singh R (2007) Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000-2005). Remote Sens Environ 107:109–119

    Article  Google Scholar 

  • Qian Y, Leung LR, Ghan SJ, Giorgi F (2003) Regional climate effects of aerosols over China: modeling and observation. Tellus B 55:914–934

  • Quan J et al (2013) Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations. Particuology 11(1):34–40

    Article  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124

    Article  Google Scholar 

  • Randerson JT, Van der Werf GR, Giglio L, Collatz GJ, Kasibhatla PS (2005) Global Fire Emissions Database, Version 2 (GFEDv2.1). Available at http://daac.ornl.gov/ from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennesse, USA. doi:10.3334/ORNLDAAC/849. Accessed 3 Oct 2012

  • Remer L et al (2005) The MODIS aerosol algorithm, products and validation. J Atmos Sci 62:947–973

    Article  Google Scholar 

  • Schell B, Ackermann IJ, Hass H, Binkowski FS, Ebel A (2001) Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J Geophys Res 106:28275–28293

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda M, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF version 3 Tech. Rep. NCAR/TN-475+STR, 113 pp

  • Twomey S (1974) Pollution and the planetary albedo. Atmos Environ 8:1251–1256

    Article  Google Scholar 

  • Wang S, Zhao M, Xing J, Wu Y, Zhou Y, Lei Y, He K, Fu L, Hao J (2010a) Quantifying the air pollutants emission reduction during the 2008 Olympic games in Beijing. Environ Sci Technol 44:2490–2496

    Article  Google Scholar 

  • Wang T, Li S, Shen Y, Deng J, Xie M (2010b) Investigations on direct and indirect effect of nitrate on temperature and precipitation in China using a regional climate chemistry modeling system. J Geophys Res 115:D00K26

    Google Scholar 

  • Wang Z et al (2013) Modeling study of regional severe hazes over mid-eastern China in January 2013 and its implications on pollution prevention and control. Sci China Earth Sci 1–11. doi:10.1007/s11430-013-4793-0

  • Wang J et al (2014) Impact of aerosol-meteorology interactions on fine particle pollution during China’s severe haze episode in January 2013. Environ Res Lett 9(9):094002. doi:10.1088/1748-9326/9/9/094002

    Article  Google Scholar 

  • Wu J, Fu C, Xu Y, Tang JP, Wang W, Wang Z (2008) Simulation of direct effects of black carbon aerosol on temperature and hydrological cycle in Asia by a regional climate model. Meteorol Atmos Phys 100:179–193

    Article  Google Scholar 

  • Wu J, Fu C, Xu Y, Tang J, Han Z, Zhang R (2009) Effects of total aerosol on temperature and precipitation in East Asia. Clim Res 40:75–87

    Article  Google Scholar 

  • Wu J, Guo, Zhao D (2013) Characteristics of aerosol transport and distribution in East Asia. Atmos Res 132–133:185–198

    Article  Google Scholar 

  • Wu J, Luo J, Zhang L, Xia L, Zhao D, Tang J (2014) Improvement of aerosol optical depth retrieval using visibility data in China during the past 50 years. J Geophys Res Atmos 119:13,370–13,387. doi:10.1002/2014JD021550

    Article  Google Scholar 

  • Xia XA, Wang MX (2004) Latest advances in aerosol absorption and its climate effects. Adv Earth Sci 19(4):630–635

    Google Scholar 

  • Xin J et al (2010) Variability and reduction of atmospheric pollutants in Beijing and its surrounding area during the Beijing 2008 Olympic Games Chinese. Sci Bull 55:1937–1944

    Article  Google Scholar 

  • Zhang Q et al (2009) Asian emissions in 2006 for the NASA INTEX-B mission. Atmos Chem Phys 9:5131–5153

    Article  Google Scholar 

  • Zhao C, Liu X, Leung LR, Johnson B, McFarlane SA, Gustafson WI Jr, Fast JD, Easter RC (2010) The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments. Atmos Chem Phys 10:8821–8838

    Article  Google Scholar 

  • Zhao C, Liu X, Leung LR, Hagos S (2011) Radiative impact of mineral dust on monsoon precipitation variability over West Africa. Atmos Chem Phys 11:1879–1893

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (Grant No. 2014CB953802), the Russian Scientific Fund under grant 14-47-00049, the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant Nos. XDB05030105, XDB05030102 and XDB05030103), and the National Natural Science Foundation of China (Grant No. 41305010). 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meigen Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 524 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Zhang, M., Liu, X. et al. Change in diurnal variations of meteorological variables induced by anthropogenic aerosols over the North China Plain in summer 2008. Theor Appl Climatol 124, 103–118 (2016). https://doi.org/10.1007/s00704-015-1403-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1403-4

Keywords

Navigation