Skip to main content

Advertisement

Log in

Advances towards improved low-frequency tree-ring reconstructions, using an updated Pinus sylvestris L. MXD network from the Scandinavian Mountains

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The dendrochronological use of the parameter maximum density (MXD) in Pinus Sylvestris L., at high latitudes, has provided valuable insights into past summer temperature variations. Few long MXD chronologies, from climatically coherent regions, exist today, with the exception being in northern Europe. Five, 500-year-long, Fennoscandian, MXD chronologies were compared with regard to their common variability and climate sensitivity. They were used to test Signal-free standardization techniques, to improve inferences of low-frequency temperature variations. Climate analysis showed that, in accordance with previous studies on MXD in Fennoscandia, the summer temperature signal is robust (R 2 > 50 %) and reliable over this climatically coherent region. A combination of Individual standardization and regional curve standardization is recommended to refine long-term variability from these MXD chronologies and relieve problems arising from low replication and standardization end-effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alexandersson H, Eggertsson Karlström C (2001) Temperaturen och nederbörden i Sverige 1961–1990: Referensnormaler. SMHI, Norrköping

    Google Scholar 

  • Biondi F, Waikul K (2004) DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311

    Article  Google Scholar 

  • Bradley RS, Jones PD (1993) “Little Ice Age” summer temperature variations: their nature and relevance to recent global warming trends. Holocene 3:367–376

    Article  Google Scholar 

  • Bräker OU (1981) Der Alterstrend bei Jahrringdichten und Jahrringbreiten von Nadelhölzern und sein Ausgleich. Mitteilungen der Forstlichen Bundesversuchsanstalt 142:75–102

    Google Scholar 

  • Briffa K R (2000) Annual climate variability in the Holocene: interpreting the message of ancient trees. Quatern Sci Rev 19:87–105

    Google Scholar 

  • Briffa KR, Melvin TM (2011) A closer look at Regional Curve Standardisation of tree-ring records: justification of the need, a warning of some pitfalls, and suggested improvements in its application. In: Hughes MK, Diaz HF, Swetnam TW (eds) Dendroclimatology: progress and prospects. Springer Verlag, p 378

  • Briffa KR, Bartholin TS, Eckstein D, Jones PD, Karlén W, Schweingruber FH, Zetterberg P (1990) A 1,400-year tree-ring record of summer temperatures in Fennoscandia. Nature 346:434–439

    Article  Google Scholar 

  • Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlén W, Zetterberg P, Eronen M (1992) Fennoscandian summers from AD 500: temperature changes on short and long timescales. Clim Dyn 7:111–119

    Article  Google Scholar 

  • Briffa KR, Osborn TJ, Schweingruber FH, Harris IC, Jones PD, Shiyatov SG, Vaganov EA (2001) Low‐frequency temperature variations from a northern tree ring density network. J Geophys Res 106:2929–2941

    Google Scholar 

  • Briffa KR, Osborn TJ, Schweingruber FH (2004) Large‐scale temperature inferences from tree rings: a review. Globe planet. Chang 40:11–26

    Google Scholar 

  • Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA (1998) Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391:678–682

    Article  Google Scholar 

  • Cook ER (1985) A time series analysis approach to tree ring standardization. Dissertation, University of Arizona

  • Cook ER, Briffa KR (1990) Data analysis. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental Sciences. Kluwer Academic Publishing, Norwell, pp 97–162

    Google Scholar 

  • Cook E R, Esper J, D’Arrigo R D (2004) Extra‐tropical northern hemisphere land temperature variability over the past 1000 years. Quatern Sci Rev 23:2063–2074

    Google Scholar 

  • Cook ER, Krusic PJ (2005) Program ARSTAN, A tree-ring standardization program based on detrending and autoregressive time series modeling with interactive graphics. Tree-Ring Laboratory, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY

    Google Scholar 

  • Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull 41:45–54

    Google Scholar 

  • Cook ER, Briffa KR, Jacoby G (1995) The segment length curse in long tree-ring chronology development for paleoclimatic studies. Holocene 5:229–237

    Article  Google Scholar 

  • Cook ER, Krusic PJ, Holmes RH, Peters K (2011) Program ARSTAN Ver.44a, 2011 (/www.ldeo.columbia.edu/tree-ring-laboratory)

  • D'Arrigo R, Jacoby G, Free M, Robock A (1999) Northern hemisphere temperature variability for the past three centuries: tree-ring and model estimates. Clim Chang 42:663–675

    Article  Google Scholar 

  • D'Arrigo R, Wilson R, Jacoby G (2006) On the long-term context for late twentieth century warming. J Geophys Res 111:D03103. doi:10.1029/2005JD006352

    Article  Google Scholar 

  • Eronen M, Zetterberg P, Briffa KR, Lindholm M, Meriläinen J, Timonen M (2002) The supra-long Scots pine tree-ring record for Finnish Lapland: Part 1. Chronology construction and initial inferences. Holocene 12:637–680

    Article  Google Scholar 

  • Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2253

    Article  Google Scholar 

  • Esper J, Cook ER, Krusic PJ, Peters K, Schweingruber FH (2003) Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Res 59:81–98

    Google Scholar 

  • Fritts HC (1976) Tree-rings and climate. Academic Press, London

    Google Scholar 

  • Grudd H (2008) Torneträsk tree-ring width and density AD 500 2004: a test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Clim Dyn 31:843–857

    Article  Google Scholar 

  • Grudd H, Briffa KR, Karlén W, Bartholin TS, Jones PD, Kromer B (2002) A 7400-year tree-ring chronology in northern Swedish Lapland: natural climate variability expressed on annual to millennial timescales. Holocene 12:657–665

    Article  Google Scholar 

  • Gunnarson BE, Linderholm HW (2002) Low-frequency summer temperature variation in central Sweden since the tenth century inferred from tree rings. Holocene 12:667–671

    Article  Google Scholar 

  • Gunnarson BE, Linderholm HW, Moberg A (2011) Improving a tree-ring reconstruction from west-central Scandinavia — 900 years of warm-season temperatures. Clim Dyn 36:97–108

    Article  Google Scholar 

  • Gunnarson BE, Josefsson T, Linderholm HW, Östlund L (2012) Legacies of pre-industrial land use can bias modern tree-ring climate calibrations. Clim Res. doi:10.3354/cr01083

  • Hustich I (1956) Notes on the growth of Scotch pine in Utsjoki in northernmost Finland. Acta Bot Fenn 56:1–13

    Google Scholar 

  • Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Avery KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Jones PD, Briffa KR, Barnett TP, Tett SFB (1998) High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with General Circulation Model control-run temperatures. Holocene 8:455–471

    Article  Google Scholar 

  • Jones PD, New M, Parker DE, Martin S, Rigor IG (1999) Surface air temperature and its changes over the past 150 years. Rev Geophys 37:173–199

    Article  Google Scholar 

  • Lean J, Rottman G, Harder J, Kopp G (2005) SORCE contributions to new understanding of global change and solar variability. Solar Phys 230:27–53. doi:10.1007/s11207-005-1527-2

    Article  Google Scholar 

  • Linderholm HW, Björklund J, Seftigen K, Gunnarson BE, Grudd H, Jeong J-H, Drobyshev I, Liu Y (2010) Dendroclimatology in Fennoscandia: from past accomplishments to future potentials. Clim Past 6:93–114

    Article  Google Scholar 

  • Ljungqvist FC, Krusic PJ, Brattström G, Sundqvist HS (2012) Northern Hemisphere temperature patterns in the last 12 centuries. Clim Past 8:227–249. doi:10.5194/cp-8-227-2012

    Article  Google Scholar 

  • Mann ME, Jones PD (2003) Global surface temperatures over the past two millennia. Geophys Res Lett 30:1820

    Article  Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1999) Northern Hemisphere temperatures during the past millennium: inferences, uncertainties and limitations. Geophys Res Lett 26:759–762

    Article  Google Scholar 

  • Matalas NC (1962) Statistical properties of tree ring data. Int Assoc Scientific Hydrol 8:39–47

    Article  Google Scholar 

  • McCarroll D, Tuovinen M, Cambell R, Gagen M, Grudd H, Jalkanen LN, Robertson I (2011) A critical evaluation of multi-proxy dendroclimatology in northern Finland. J Quaternary Sci 26:7–14

    Article  Google Scholar 

  • Melvin TM (2004) Historical growth rates and changing climatic sensitivity of boreal conifers. Dissertation, University of East Anglia, Norwich, UK

  • Melvin TM, Briffa KR (2008) A "signal-free" approach to dendroclimatic standardisation. Dendrochronologia 26:71–86

    Article  Google Scholar 

  • Melvin TM, Briffa KR, Nicolussi K, Grabner M (2007) Time-varying-response smoothing. Dendrochronologia 25:65–69

    Article  Google Scholar 

  • Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlén W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617

    Article  Google Scholar 

  • Salminen H, Jalkanen R (2007) Intra-annual height increment of Pinus sylvestris at high latitudes in Finland. Tree Physiol 27:1347–1353

    Article  Google Scholar 

  • Schmitt U, Jalkanen R, Eckstein D (2004) Cambium dynamics of Pinus sylvestris and Betula spp. in the northern boreal forest in Finland. Silva Fenn 38:167–178

    Google Scholar 

  • Schweingruber FH, Fritts HC, Bräker OU, Drew LG, Schär E (1978) The x-ray technique as applied to dendrochronology. Tree-ring bull 38:61–91

    Google Scholar 

  • Schweingruber FH, Bartholin T, Schär E, Briffa KR (1988) Radiodensitometric–dendroclimatological conifer chronologies from Lapland (Scandinavia) and the Alps (Switzerland). Boreas 17:559–566

    Article  Google Scholar 

  • Seo J-W, Eckstein D, Jalkanen R, Rickebusch S, Schmitt U (2008) Estimating the onset of cambial activity in Scots pine in northern Finland by means of the heat-sum approach. Tree Physiol 28:105–112

    Article  Google Scholar 

  • Thompson LG, Mosley-Thompsom E, Davis ME, Lin P-N, Henderson K, Mashiotta TA (2003) Tropical glacier and ice core evidence of climate change on annual to millennial time scales. Clim Change 59:137–155

    Article  Google Scholar 

  • von Storch H, Zorita E, Jones JM, Dimitriev Y, Gonzalez Rouco F, Tett SFB (2004) Reconstructing past climate from noisy data. Science 306:679–682. doi:10.1126/science.1096109

    Article  Google Scholar 

  • Wareing PF (1949) Photoperiodic control of leaf growth and cambial activity in Pinus sylvestris. Nature 163:770–771

    Article  Google Scholar 

  • Warren WG (1980) On removing the growth trend from dendrochronological data. Tree-Ring Bull 40:35–44

    Google Scholar 

  • White PS (1979) Pattern, process, and natural disturbance in vegetation. Bot Rev 45:229–299

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

  • Wilson RJS, Luckman BH (2003) Dendroclimatic reconstruction of maximum summer temperatures from upper tree-line sites in interior British Columbia. Holocene 13:853–863

    Article  Google Scholar 

  • Yu L, An Z, Linderholm HW, Chen D, Song H, Cai Q, Sun J, Tian H (2009) Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings. Sci China Ser D-Earth Sci 52:348–359

    Article  Google Scholar 

  • Zhang P, Cheng H, Edwards RL, Chen F, Wang Y, Yang X, Liu J, Tan M, Wang X, Liu J, An C, Dai Z, Zhou J, Zhang D, Jia J, Jin L, Johnson KR (2008) A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 322:940–942

    Article  Google Scholar 

  • Zorita E, González-Rouco JF, von Storch H, Montávez JP, Valero F (2005) Natural and anthropogenic modes of surface temperature variations in the last thousand years. Geophys Res Lett 32:L08707. doi:10.1029/2004GL021563

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Regional County Board of Norrbotten for permission to conduct field work in Ammarnäs and Tjeggelvas NR, and the regional county board of Västerbotten, Tomas Stavfjord, and Anna Wenngren for permission to conduct field work in Kittelfjäll. We also thank Kristina Seftigen and Petter Stridbeck for valuable discussions. We thank B. Helamb at Arctic Air for helicopter transportation. This work was supported by Vetenskapsrådet and Formas (grants to Hans W Linderholm), Bert Bolin Climate Center (BBCC) and the Centre for Environmental Research (CMF) in Umeå. The paper contributes to the Swedish strategic research areas Modeling the Regional and Global Earth system (MERGE), and Biodiversity and Ecosystem services in a Changing Climate (BECC). This is contribution # 14 from the Sino–Swedish Centre for Tree ring Research (SISTRR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper A. Björklund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Björklund, J.A., Gunnarson, B.E., Krusic, P.J. et al. Advances towards improved low-frequency tree-ring reconstructions, using an updated Pinus sylvestris L. MXD network from the Scandinavian Mountains. Theor Appl Climatol 113, 697–710 (2013). https://doi.org/10.1007/s00704-012-0787-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0787-7

Keywords

Navigation