Skip to main content
Log in

Fuzzy logic based melting layer recognition from 3 GHz dual polarization radar: appraisal with NWP model and radio sounding observations

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The advent of polarimetry makes it possible to categorize hydrometeor inferences more accurately by providing detailed information of the scattering properties. In light of this, the authors have developed a fuzzy logic based system for the recognition of melting layer in the atmosphere. The fuzzy system is based on characterizing melting layer scatterers from non-melting scatterers using five crisp inputs, namely, horizontal reflectivity (Z H), differential reflectivity (Z DR), co-polar correlation coefficient (ρ HV), linear depolarization ratio (LDR) and height of radar measurements (H). For the implementation of melting layer recognition, the study employs the dual polarized signatures from the 3 GHz Chilbolton Advanced Meteorological Radar (CAMRA). Furthermore, a simple but effective averaging procedure for melting level estimation from a volume RHI scan is proposed. The proposed scheme has been evaluated with Weather Research and Forecasting (WRF) model simulated and radio soundings retrieved melting level height over a total of 84 RHI scan-based bright band cases. The results confirm that the estimated melting level heights from the proposed method are in good agreement with the WRF model and radio sounding observations. The 3 GHz radar melting level height estimates correspond with the R 2 and RMSE values of 0.92 and 0.24 km, respectively, when compared to the radio soundings, and 0.93 and 0.21 km, respectively, when compared to the WRF model results. Moreover, the related R 2 and RMSE values are reported as 0.93 and 0.22 km respectively between the WRF and radio soundings retrievals. This implies that the downscaled WRF modelled melting level height may also be used for operational or research needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Austin PM, Bemis AC (1950) A quantitative study of the bright band in radar precipitation echoes. J Meteorol 7(2):145–151

    Article  Google Scholar 

  • Baldini L, Gorgucci E (2006) Identification of the melting layer through dual-polarization radar measurements at vertical incidence. J Atmos Ocean Technol 23(6):829–839

    Article  Google Scholar 

  • Bellon A, Lee G, Zawadzki I (2005) Error statistics of VPR corrections in stratiform precipitation. J Appl Meteorol 44(7):998–1015

    Article  Google Scholar 

  • Beswick KM, Gallagher MW, Webb AR, Norton EG, Perry F (2008) Application of the Aventech AIMMS20AQ airborne probe for turbulence measurements during the Convective Storm Initiation Project. Atmos Chem Phys 8(17):5449–5463

    Article  Google Scholar 

  • Boodoo S, Hudak D, Donaldson N, Leduc M (2010) Application of dual-polarization radar melting-layer detection algorithm. J Appl Meteorol Climatol 49(8):1779–1793. doi:10.1175/2010jamc2421.1

    Article  Google Scholar 

  • Brandes EA, Ikeda K (2004) Freezing-level estimation with polarimetric radar. J Appl Meteorol 43(11):1541–1553

    Article  Google Scholar 

  • Bray M, Han DW, Xuan YQ, Bates P, Williams M (2011) Rainfall uncertainty for extreme events in NWP downscaling model. Hydrol Process 25(9):1397–1406. doi:10.1002/hyp. 7905

    Article  Google Scholar 

  • Bringi V, Chandrasekar V (2001) Polarimetric Doppler weather radar: principles and applications. Cambridge University Press, NY

  • Cifelli R, Chandrasekar V, Lim S, Kennedy PC, Wang Y, Rutledge SA (2011) A new dual-polarization radar rainfall algorithm: application in Colorado precipitation events. J Atmos Ocean Technol 28(3):352–364. doi:10.1175/2010jtecha1488.1

    Article  Google Scholar 

  • Defer E, Prigent C, Aires F, Pardo JR, Walden CJ, Zanife OZ, Chaboureau JP, Pinty JP (2008) Development of precipitation retrievals at millimeter and sub-millimeter wavelengths for geostationary satellites. J Geophys Res-Atmos 113(D8):doi:D08111

    Article  Google Scholar 

  • Dudhia J (1993) A nonhydrostatic version of the penn state ncar mesoscale model - validation tests and simulation of an atlantic cyclone and cold-front. Mon Weather Rev 121(5):1493–1513. doi:10.1175/1520-0493(1993) 121<1493:anvotp>2.0.co;2

    Article  Google Scholar 

  • El-Magd A, Chandrasekar V, Bringi VN, Strapp W (2000) Multiparameter radar and in situ aircraft observation of graupel and hail. IEEE Trans Geosci Remote Sens 38(1):570–578. doi:10.1109/36.823951

    Article  Google Scholar 

  • Evaristo R, Scialom G, Viltard N, Lemaitre Y (2010) Polarimetric signatures and hydrometeor classification of West African squall lines. Q J R Meteorol Soc 136:272–288. doi:10.1002/qj.561

    Article  Google Scholar 

  • Fabry F, Zawadzki T (1995) Long-term radar observations of the melting layer of precipitation and their interpretation. J Atmos Sci 52(7):838–851

    Article  Google Scholar 

  • Germann U, Joss J (2002) Mesobeta profiles to extrapolate radar precipitation measurements above the Alps to the ground level. J Appl Meteorol 41(5):542–557

    Article  Google Scholar 

  • Giangrande SE, Krause JM, Ryzhkov AV (2008) Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J Appl Meteorol Climatol 47(5):1354–1364. doi:10.1175/2007jamc1634.1

    Article  Google Scholar 

  • Goddard JWF, Eastment JD, Thurai M (1994) The chilbolton advanced meteorological radar—a tool for multidisciplinary atmospheric research. Electron Commun Eng J 6(2):77–86. doi:10.1049/ecej:19940205

    Article  Google Scholar 

  • Gourley JJ, Calvert CM (2003) Automated detection of the bright band using WSR-88D data. Weather Forecast 18(4):585–599. doi:10.1175/1520-0434(2003) 018<0585:adotbb>2.0.co;2

    Article  Google Scholar 

  • Gray WR, Uddstrom MJ, Larsen HR (2002) Radar surface rainfall estimates using a typical shape function approach to correct for the variations in the vertical profile of reflectivity. Int J Remote Sens 23(12):2489–2504. doi:10.1080/01431160110070834

    Article  Google Scholar 

  • Heinselman PL, Ryzhkov AV (2006) Validation of polarimetric hail detection. Weather Forecast 21(5):839–850. doi:10.1175/waf956.1

    Article  Google Scholar 

  • Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132(1):103–120. doi:10.1175/1520-0493(2004) 132<0103:aratim>2.0.co;2

    Article  Google Scholar 

  • Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341. doi:10.1175/mwr3199.1

    Article  Google Scholar 

  • Ikeda K, Brandes EA, Rasmussen RM (2005) Polarimetric radar observation of multiple freezing levels. J Atmos Sci 62(10):3624–3636. doi:10.1175/jas3556.1

    Article  Google Scholar 

  • Ishak AM, Bray M, Remesan R, Han DW (2010) Estimating reference evapotranspiration using numerical weather modelling. Hydrol Process 24(24):3490–3509. doi:10.1002/hyp. 7770

    Article  Google Scholar 

  • Islam T, Rico-Ramirez MA, Han D (2012a) Tree-based genetic programming approach to infer microphysical parameters of the DSDS from the polarization diversity measurements. Computers & Geosciences. doi:10.1016/j.cageo.2012.05.028

  • Islam T, Rico-Ramirez MA, Han D, Srivastava PK (2012b) Artificial intelligence techniques for clutter identification with polarimetric radar signatures. Atmos Res 109–110:95–113. doi:10.1016/j.atmosres.2012.02.007

    Article  Google Scholar 

  • Islam T, Rico-Ramirez MA, Han D, Srivastava PK (2012c) A Joss–Waldvogel disdrometer derived rainfall estimation study by collocated tipping bucket and rapid response rain gauges. Atmos Sci Lett 13(2):139–150. doi:10.1002/asl.376

    Article  Google Scholar 

  • Islam T, Rico-Ramirez MA, Han D, Srivastava PK, Ishak AM (2012d) Performance evaluation of the TRMM precipitation estimation using ground-based radars from the GPM validation network. J Atmos Solar-Terr Phys 77:194–208. doi:10.1016/j.jastp. 2012.01.001

    Article  Google Scholar 

  • Islam T, Rico-Ramirez MA, Thurai M, Han D (2012e) Characteristics of raindrop spectra as normalized gamma distribution from a Joss–Waldvogel disdrometer. Atmos Res 108:57–73. doi:10.1016/j.atmosres.2012.01.013

    Article  Google Scholar 

  • Joss J, Waldvogel A (1990) Precipitation measurement and hydrology. Radar in meteorology(A 90-39376 17-47). American Meteorological Society, Boston, pp 577–606

    Google Scholar 

  • Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteorol 43(1):170–181. doi:10.1175/1520-0450(2004) 043<0170:tkcpau>2.0.co;2

    Article  Google Scholar 

  • Kitchen M, Brown R, Davies AG (1994) Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Q J R Meteorol Soc 120(519):1231–1254. doi:10.1256/smsqj.51905

    Article  Google Scholar 

  • Liguori S, Rico-Ramirez MA, Schellart ANA, Saul AJ (2012) Using probabilistic radar rainfall nowcasts and NWP forecasts for flow prediction in urban catchments. Atmos Res 103:80–95. doi:10.1016/j.atmosres.2011.05.004

    Article  Google Scholar 

  • Lim S, Chandrasekar V, Bringi VN (2005) Hydrometeor classification system using dual-polarization radar measurements: model improvements and in situ verification. IEEE Trans Geosci Remote Sens 43(4):792–801. doi:10.1109/tgrs.2004.843077

    Article  Google Scholar 

  • Liu HP, Chandrasekar V (2000) Classification of hydrometeors based on polarimetric radar measurements: development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J Atmos Ocean Technol 17(2):140–164

    Article  Google Scholar 

  • Liu J, Bray M, Han D (2011) Sensitivity of the Weather Research & Forecasting (WRF) model to downscaling ratios and storm types in rainfall simulation. Hydrol Process. doi:10.1002/hyp. 8247

  • Marzano FS, Scaranari D, Montopoli M, Vulpiani G (2008) Supervised classification and estimation of hydrometeors from C-band dual-polarized radars: a Bayesian approach. IEEE Trans Geosci Remote Sens 46(1):85–98. doi:10.1109/tgrs.2007.906476

    Article  Google Scholar 

  • Matrosov SY (2004) Depolarization estimates from linear H and V measurements with weather radars operating in simultaneous transmission-simultaneous receiving mode. J Atmos Ocean Technol 21(4):574–583. doi:10.1175/1520-0426(2004) 021<0574:deflha>2.0.co;2

    Article  Google Scholar 

  • Matrosov SY, Clark KA, Kingsmill DE (2007) A polarimetric radar approach to identify rain, melting-layer, and snow regions for applying corrections to vertical profiles of reflectivity. J Appl Meteorol Climatol 46(2):154–166. doi:10.1175/jam2508.1

    Article  Google Scholar 

  • Mittermaier MP, Illingworth AJ (2003) Comparison of model-derived and radar-observed freezing-level heights: implications for vertical reflectivity profile-correction schemes. Q J R Meteorol Soc 129(587):83–95. doi:10.1256/qj.02.19

    Article  Google Scholar 

  • Park H, Ryzhkov AV, Zrnic DS, Kim KE (2009) The hydrometeor classification algorithm for the polarimetric WSR-88D: description and application to an MCS. Weather Forecast 24(3):730–748. doi:10.1175/2008waf2222205.1

    Article  Google Scholar 

  • Rico-Ramirez MA, Cluckie ID (2007) Bright-band detection from radar vertical reflectivity profiles. Int J Remote Sens 28(18):4013–4025

    Article  Google Scholar 

  • Rico-Ramirez MA, Cluckie ID (2008) Classification of ground clutter and anomalous propagation using dual-polarization weather radar. IEEE Trans Geosci Remote Sens 46(7):1892–1904. doi:10.1109/tgrs.2008.916979

    Article  Google Scholar 

  • Rico-Ramirez MA, Cluckie ID, Han D (2005) Correction of the bright band using dual-polarisation radar. Atmos Sci Lett 6(1):40–46. doi:10.1002/asl.89

    Article  Google Scholar 

  • Rico-Ramirez MA, Cluckie ID, Shepherd G, Pallot A (2007) A high-resolution radar experiment on the island of Jersey. Meteorol Appl 14(2):117–129. doi:10.1002/met.13

    Article  Google Scholar 

  • Ryzhkov AV, Zrnic DS (1998) Discrimination between rain and snow with a polarimetric radar. J Appl Meteorol 37(10):1228–1240

    Article  Google Scholar 

  • Sanchez-Diezma R, Zawadzki I, Sempere-Torres D (2000) Identification of the bright band through the analysis of volumetric radar data. J Geophys Res-Atmos 105(D2):2225–2236

    Article  Google Scholar 

  • Skamarock WC, Klemp JB (1992) The stability of time-split numerical-methods for the hydrostatic and the nonhydrostatic elastic equations. Mon Weather Rev 120(9):2109–2127. doi:10.1175/1520-0493(1992) 120<2109:tsotsn>2.0.co;2

    Article  Google Scholar 

  • Szyrmer W, Zawadzki I (1999) Modeling of the melting layer. Part I: dynamics and microphysics. J Atmos Sci 56(20):3573–3592

    Article  Google Scholar 

  • Testud J, Le Bouar E, Obligis E, Ali-Mehenni M (2000) The rain profiling algorithm applied to polarimetric weather radar. J Atmos Ocean Technol 17(3):332–356. doi:10.1175/1520-0426(2000) 017<0332:trpaat>2.0.co;2

    Article  Google Scholar 

  • Vignal B, Krajewski WF (2001) Large-sample evaluation of two methods to correct range-dependent error for WSR-88D rainfall estimates. J Hydrometeorol 2(5):490–504

    Article  Google Scholar 

  • Vivekanandan J, Zrnic DS, Ellis SM, Oye R, Ryzhkov AV, Straka J (1999) Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull Amer Meteorol Soc 80(3):381–388. doi:10.1175/1520-0477(1999) 080<0381:cmrusb>2.0.co;2

    Article  Google Scholar 

  • Wexler R, Atlas D (1956) Factors influencing radar-echo intensities in the melting layer. Q J R Meteorol Soc 82(353):349–351

    Article  Google Scholar 

  • White AB, Gottas DJ, Strem ET, Ralph FM, Neiman PJ (2002) An automated brightband height detection algorithm for use with Doppler radar spectral moments. J Atmos Ocean Technol 19(5):687–697

    Article  Google Scholar 

  • Zhang J, Langston C, Howard K (2008) Brightband identification based on vertical profiles of reflectivity from the WSR-88D. J Atmos Ocean Technol 25(10):1859–1872. doi:10.1175/2008jtecha1039.1

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the British Atmospheric Data Centre and the Radio Communications Research Unit at the STFC Rutherford Appleton Laboratory for providing the radar and radio soundings data. The FNL data for this study are from the Research Data Archive (RDA) which is maintained by the Computational and Information Systems Laboratory (CISL) at the National Center for Atmospheric Research (NCAR). NCAR is sponsored by the National Science Foundation (NSF). The original data are available from the RDA (http://dss.ucar.edu) in dataset number ds083.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanvir Islam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, T., Rico-Ramirez, M.A., Han, D. et al. Fuzzy logic based melting layer recognition from 3 GHz dual polarization radar: appraisal with NWP model and radio sounding observations. Theor Appl Climatol 112, 317–338 (2013). https://doi.org/10.1007/s00704-012-0721-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0721-z

Keywords

Navigation