Skip to main content
Log in

Mapping average annual precipitation in Serbia (1961–1990) by using regression kriging

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The appearence of geostatistics and geographical information systems has made it possible to analyze complex spatial patterns of meteorological elements over large areas in the applied climatology. The objective of this study is to use geostatistics to characterize the spatial structure and map the spatial variation of average values of precipitation for a 30-year period in Serbia. New, recently introduced, geostatistical algorithms facilitate utilization of auxiliary variables especially remote sensing data or freely available global datasets. The data from Advanced Spaceborn Thermal Emission and Reflection Radiometer global digital elevation model are incorporated as ancillary variables into spatial prediction of average annual precipitation using geostatistical method known as regression kriging. The R 2 value of 0.842 proves high performance result of the prediction of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Reference

  • Acero FJ, Gallego MC, García JA (2011) Multi-day rainfall trends over the Iberian Peninsula. Theor Appl Climatol. doi:10.1007/s00704-011-0534-5

  • Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675

    Article  Google Scholar 

  • Bacchi B, Kottegoda NT (1995) Identification and calibration of spatial correlation patterns of rainfall. J Hydrol 165:311–348

    Article  Google Scholar 

  • Balling RC, Goodrich GB (2011) Spatial analysis of variations in precipitation intensity in the USA. Theor Appl Climatol 104(3–4):415–421

    Article  Google Scholar 

  • Boer EPJ, de Beurs KM, Hartkamp AD (2001) Kriging and thin plate splines for mapping climate variables. Intl J Appl Earth Observation Geoinformation 3(2):146–154

    Article  Google Scholar 

  • Bryan BA, Adams JM (2002) Three-dimensional neurointerpolation of annual mean precipitation and temperature surfaces for China. Geogr Anal 34(2):93–111

    Google Scholar 

  • Carrera-Hernández JJ, Gaskin SJ (2007) Spatio- temporal analysis of daily precipitationand temperature in the Basin of Mexico. J Hydrol 336:231–249

    Article  Google Scholar 

  • Cheng K, Lin Y, Liou J (2008) Rain-gauge network evaluation and augmentation using geostatistics. Hydrol Process 22(14):2554–2564

    Article  Google Scholar 

  • Chilès J, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, Ney York, p 695

    Book  Google Scholar 

  • del Rio S, Herrero L, Fraile R, Penas A (2011) Spatial distribution of recent rainfall trends in Spain (1961–2006). Int J Climatol 31:656–667

    Article  Google Scholar 

  • Ducić V, Radovanović M (2005) Klima Srbije (Climate of Serbia), Zavod za udžbenike i nastavna sredstva, Beograd, pp 212 (in Serbian)

  • El Kamel H F, Slimani M and Cudennec C (2010) A comparison of three geostatistical procedures for rainfall network optimization, Proceedings of International Renewable Energy Congress, IREC2010, November 5–7, 2010. Sousse, Tunisia: 260–267

  • Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression: the analysis of spatially varying relationships. Wiley, Chicester, p 265

    Google Scholar 

  • Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206

    Article  Google Scholar 

  • Goovaerts P (1999) Using elevation to aid the geostatistical mapping of rainfall erosivity. Catena 34:227–242

    Article  Google Scholar 

  • Goovaerts P (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hydrol 228:113–129

    Article  Google Scholar 

  • Gouvas M, Sakellariou N, Xystrakis F (2009) The relationship between altitude of meteorological stations and average monthly and annual precipitation. Stud Geophys Geod 53:557–570

    Article  Google Scholar 

  • Grimes DIF, Pardo-Igúzquira E (2010) Geostatistical analysis of rainfall. Geogr Anal 42(2):136–160

    Article  Google Scholar 

  • Hengl T (2009) A practical guide to geostatistical mapping, 2nd Ed. University of Amsterdam. www.lulu.com, pp 291

  • Hengl T, Heuvelink GBM, Tadić MP, Pebesma EJ (2011) Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images. Theor Appl Climatol 107(1–2):265–277

    Google Scholar 

  • Hutchinson MF, Bischof RJ (1983) A new method for estimating the spatial distribution of mean seasonal and mean annual rainfall applied to the Hunter Valley, New South Wales. Aust Meteorol Mag 31:179–184

    Google Scholar 

  • Kassim AHM, Kottegoda NT (1991) Rainfall network design through comparative kriging methods. Hydrol Sci J 36(3):223–240

    Article  Google Scholar 

  • Kastelec D and Košmelj K (2002) Spatial interpolation of mean yearly precipitation using universal kriging. Mrvar A. and Ferligoj A. (Eds). In: Developments in statistics vol 17. Metodološki zvezki. pp 149–162

  • Lee J, Wong DWS (2005) Statistical analysis of geographic information with ArcView GIS and ArcGIS. Wiley, New York, p 446

    Google Scholar 

  • Lloyd CD (2005) Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. J Hydrol 308:128–150

    Article  Google Scholar 

  • McBratney AB, Odeh IOA, Bishop TFA, Dunbar MS, Shatar TM (2000) An overview of pedometric techniques for use in soil survey. Geoderma 97:293–327

    Article  Google Scholar 

  • Milovanović B (2005) Statistical procedures application and results of research of precipitation on mountain Stara planina. J Geogr Inst “Jovan Cvijić” SASA 54:33–44

    Article  Google Scholar 

  • Pebesma EJ (2004) Multivariable geostatistics in S: the GSTAT package. Comput Geosci 30:683–691

    Article  Google Scholar 

  • Perčec Tadić M (2010) Gridded Croatian climatology for 1961–1990. Theor Appl Climatol 102:87–103

    Article  Google Scholar 

  • Phillips DL, Dolph J, Marks D (1992) A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain. Agric For Meteorol 58(1–2):119–141

    Article  Google Scholar 

  • Prudhomme C, Reed DW (1999) Mapping extreme rainfall in a mountainous region using geostatistical techniques: a case study in Scotland. Int J Climatol 19:1337–1356

    Article  Google Scholar 

  • R-project (2011) http://cran.r-project.org/doc/manuals/R-lang.html. Accessed: 1 Oct 2011

  • Tabios GQ, Salas JD (1985) A comparative analysis of techniques for spatial interpolation of precipitation. Water Resour Bull 21(3):365–380

    Article  Google Scholar 

  • Tošić I (2004) Spatial and temporal variability of winter and summer precipitation over Serbia and Montenegro. Theor Appl Climatol 77:47–56

    Article  Google Scholar 

  • Tošić I (2005) Analysis of temperature and precipitation time series. Faculty of Physics, University of Belgrade, Belgrade. Ph.D. thesis, pp 164 (in Serbian)

  • Unkašević M, Radinović Đ (2000) Statistical analysis of daily maximum and monthly precipitation at Belgrade. Theor Appl Climatol 66:241–249

    Article  Google Scholar 

  • Unkašević M, Tošić I (2011) A statistical analysis of the daily precipitation over Serbia: trends and indices. Theor Appl Climatol 106:69–78

    Article  Google Scholar 

  • Webster R, Oliver MA (2007) Geostatistics for environmental scientists. Wiley, Chichester, p 315

    Book  Google Scholar 

  • WMO (1984) World Meteorological Organization, 1984: Technical regulations, vol I. WMO Publication No. 49. Switzerland, Geneva

    Google Scholar 

  • WMO (2002) World Meteorological Organization, 2002: Technical Document 1125, GCOS-76. Switzerland, Geneva

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science of the Republic of Serbia (contracts no. III 47014, TR 36009, and III 43007)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branislav Bajat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajat, B., Pejović, M., Luković, J. et al. Mapping average annual precipitation in Serbia (1961–1990) by using regression kriging. Theor Appl Climatol 112, 1–13 (2013). https://doi.org/10.1007/s00704-012-0702-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0702-2

Keywords

Navigation