Skip to main content
Log in

Surface ozone concentrations in Agra: links with the prevailing meteorological parameters

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Measurements of surface ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx=NO+NO2) and meteorological parameters have been made at Agra (North Central India, 27°10’N, 78°05’E) in post monsoon and winter season. The diurnal variation in O3 concentration shows daytime in situ photochemical production with diurnal maximum in noon hours ranging from 51 to 54 ppb in post monsoon and from 76 to 82 ppb in winter, while minimum (16–24 ppb) during nighttime and early morning hours. Average 8-h O3 concentration varied from 12.4 to 83.9 ppb. The relationship between meteorological parameters (solar radiation intensity, temperature, relative humidity, wind speed and wind direction) and surface O3 variability was studied using principal component analysis (PCA), multiple linear regression (MLR) and correlation analysis (CA). PCA and MLR of daily mean O3 concentrations on meteorological parameters explain up to 80 % of day to day ozone variability. Correlation with meteorology is strongly emphasized on days having strong solar radiation intensity and longer sunshine time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdul-Wahab SA, Bakheit CS, Al-Alawi SM (2005) Principal component and multiple regression analysis in modeling of ground-level ozone and factors affecting its concentrations. Environ Modell Softw 20:1263–1271

    Article  Google Scholar 

  • Andric EK, Brana J, Gvozdic V (2009) Impact of meteorological factors on ozone concentrations modelled by time series analysis and multivariate statistical methods. Ecol Inf 4:117–122

    Article  Google Scholar 

  • Bai J (2010) Study on surface O3 chemistry and photochemistry by UV energy conservation. Atmos Pollut Res 1:118–127

    Google Scholar 

  • Baertsch-Ritter N, Keller J, Dommen J, Prevot ASH (2004) Effects of various meteorological conditions and spatial emission resolutions on the ozone concentration and ROG/NO x limitation in the Milan area (I). Atmos Chem Phys 4:423–438

    Article  Google Scholar 

  • Broniman S, Neu U (1997) Weekend–weekday differences of near-surface ozone concentrations in Switzerland for different meteorological conditions. Atmos Environ 31(8):1127–1135

    Article  Google Scholar 

  • Cheng KJ, Tsai CH, Chiang HC, Hsu CW (2007) Meteorologically adjusted ground level ozone trends in southern Taiwan. Environ Monit Assess 129(1–3):339–347

    Article  Google Scholar 

  • Debaje SB, Kakade AD (2009) Surface ozone variability over western Maharashtra, India. J Hazard Mal 161:686–700

    Article  Google Scholar 

  • Duenas C, Fernandez MC, Canete S, Carretero J, Liger E (2002) Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean Coast. Sci Tot Environ 299:97–113

    Article  Google Scholar 

  • Elminir HK (2005) Dependence of urban air pollutants on meteorology. Sci Tot Environ 350(1–3):225–237

    Google Scholar 

  • Felipe-Sotelo M, Gustems L, Hernández I, Terrado M, Tauler R (2006) Investigation of geographical and temporal distribution of tropospheric ozone in Catalonia (North-East Spain) during the period 2000–2004 using multivariate data analysis methods. Atmos Environ 40:7421–7436

    Article  Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN (1986) Formation of sulfuric and nitric acids in acid rain and fogs. Atmospheric chemistry: Fundamental and experimental techniques. John Wiley, New York, pp 702–705

    Google Scholar 

  • Ho KF, Lee SC, Chiu GMY (2002) Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station. Atmos Environ 36:57–65

    Article  Google Scholar 

  • Jackson JE (1991) A users guide to principal components. Wiley-Interscience, John Wiley & Sons, New York,. (US). 569 pp.

  • Judith P, Pawson S, Ryan L, Fogt J, Nielsen E, Neff WD (2008) Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys Res Lett 35:L08714. doi:10.1029/2008GL033317

    Article  Google Scholar 

  • Karatzas K, Kaltsatos S (2007) Air pollution modeling with aid of computational intelligence methods in Thessaloniki, Greece. Simul Modell Pract Theory 15:1310–1319

    Article  Google Scholar 

  • Khiem M, Ooka R, Huang H, Hayami H, Yoshikado H, Kawamoto Y (2010) Analysis of the relationship between changes in meteorological conditions and the variation in summer ozone levels over the Central Kanto area. Adv Meteorol, Article ID 349248, 13 pp

  • Lal S, Naja M, Subbaraya BH (2000) Seasonal variations in surface ozone and its precursors over an urban site in India. Atmos Environ 34:2713–2724

    Article  Google Scholar 

  • Lelieveld J, Crutzen PJ (1990) Influence of cloud photochemical processes on tropospheric ozone. Nature 343:227–233

    Article  Google Scholar 

  • Lengyel A, Heberger K, Paksy L, Banhidi O, Rajko R (2004) Prediction of ozone concentration in ambient air using multivariate methods. Chemos 57:889–896

    Article  Google Scholar 

  • Naja M, Lal S (2002) Surface ozone and precursor gases at Gadanki (13.58 °N, 79.28 °E), a tropical rural site in India. J Geophys Res 107 (D14). doi:10.1029/2001JD000357

  • Pudasainee D, Sapkota B, Shrestha ML, Kaga A, Kondo A, Inou Y (2006) Ground level ozone concentrations and its association with NO x and meteorological parameters in Kathmandu valley, Nepal. Atmos Environ 40:8081–8087

    Article  Google Scholar 

  • Rajput N, Lakhani A (2010) Measurements of polycyclic aromatic hydrocarbons in an urban atmosphere of Agra, India. Atmosfera 23(2):165–183

    Google Scholar 

  • Roemer M, Tarasova O (2002) Methane in The Netherlands – an exploratory study to separate time scales. TNO report R 2002/215, The Netherlands

  • Scheel HE, Areskoung H, Geiss H, Gomischel B, Granby K, Haszpra L, Klasink L, Kley D, Laurila T, Lindskog T, Roemer M, Schmitt R, Simmonds P, Solberg S, Toupance G (1997) On the spatial distribution and seasonal variation of lower-troposphere ozone over Europe. J Atmos Chem 28:11–28

    Article  Google Scholar 

  • Singla V, Pachauri T, Satsangi A, Kumari KM, Lakhani A (2012) Comparison of BTX Profiles and their Mutagenicity Assessment at two sites of Agra. India Sci World J. doi:10.1100/2012/272853

  • Sillman S, Samson PJ (1995) Impact of temperature on oxidant photochemistry in urban, polluted and remote environments. J Geophys Res 100:11 497–11 508

    Google Scholar 

  • Son SW, Polvani LM, Waugh DW, Akiyoshi H, Garcia R, Kinnison D, Pawson S, Rozanov E, Shepherd TG, Shibata K (2008) The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Sci 320:1486–1489

    Article  Google Scholar 

  • Spichtinger N, Winterhalter M, Fabian P (1996) Ozone and Grosswetterlagen: analysis for the Munich Metropolitan Area. Environ Sci Poll Res 3(3):145–152

    Article  Google Scholar 

  • Statheropoulos M, Vassiliadis N, Pappa A (1998) Principal component and canonical correlation analysis for examining air pollution and meteorological data. Atmos Environ 32(6):1087–1095

    Article  Google Scholar 

  • Tarasova OA, Karpetchko AY (2003) Accounting for local meteorological effects in the ozone time-series of Lovozero (Kola Peninsula). Atmos Chem Phys Discuss 3(655):676

    Google Scholar 

  • Tu J, Xia ZG, Wang H, Li W (2007) Temporal variations in surface ozone and its precursors and meteorological effects at an urban site in China. Atmos Res 85(3–4):310–337

    Article  Google Scholar 

  • Vogel B, Riemer N, Vogel H, Fiedler F (1999) Findings on NO y as an indicator for ozone sensitivity based on different numerical simulations. J Geophys Res 104:3605–3620

    Article  Google Scholar 

  • Wilson SR, Solomon KR, Tang X (2007) Changes in tropospheric composition and air quality due to stratospheric ozone depletion and climate change. PPS 6:301–310

    Google Scholar 

  • Winer AM, Peters JW, Smith JP, Pitts JN Jr (1974) Response of commercial chemiluminescent NO–NO2 analyzers to other nitrogen-containing compounds. Environ Sci Technol 8:1118–1121

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Director, Dayalbagh Educational Institute, Agra and Head, Department of Chemistry for necessary help. They gratefully acknowledge the financial support provided by ISRO-GBP under AT-CTM project. One of the authors, Vyoma Singla, is grateful to the above project for providing JRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Lakhani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singla, V., Pachauri, T., Satsangi, A. et al. Surface ozone concentrations in Agra: links with the prevailing meteorological parameters. Theor Appl Climatol 110, 409–421 (2012). https://doi.org/10.1007/s00704-012-0632-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0632-z

Keywords

Navigation