Skip to main content
Log in

Characterising and visualizing spatio-temporal patterns in hourly precipitation records

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

We develop new techniques to summarise and visualise spatial patterns of coincidence in weather events such as more or less heavy precipitation at a network of meteorological stations. The cosine similarity measure, which has a simple probabilistic interpretation for vectors of binary data, is generalised to characterise spatial dependencies of events that may reach different stations with a variable time lag. More specifically, we reduce such patterns into three parameters (dominant time lag, maximum cross-similarity, and window-maximum similarity) that can easily be computed for each pair of stations in a network. Furthermore, we visualise such three-parameter summaries by using colour-coded maps of dependencies to a given reference station and distance-decay plots for the entire network. Applications to hourly precipitation data from a network of 93 stations in Sweden illustrate how this method can be used to explore spatial patterns in the temporal synchrony of precipitation events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Achberger C, Chen D, Alexandersson H (2006) The surface winds of Sweden during 1999–2000. Int J Climatol 26:159–178

    Article  Google Scholar 

  • Aghakouchak A, Ciach G, Habib E (2010) Estimation of tail dependence coefficient in rainfall accumulation fields. Adv Water Resour 33(9):1142–1149. doi:10.1016/j.advwatres.2010.07.003

    Article  Google Scholar 

  • Baigorria GA, Jones JW, O'Brien JJ (2007) Understanding rainfall spatial variability in southeast USA at different timescales. Int J Climatol 27(6):749–760. doi:10.1002/joc.1435

    Article  Google Scholar 

  • Barbaliscia F, Ravaioli G, Paraboni A (1992) Characteristics of the spatial statistical dependence of rainfall rate over large areas. IEEE Trans Antenn Propag 40(1):8–12

    Article  Google Scholar 

  • Brissette FP, Khalili M, Leconte R (2007) Efficient stochastic generation of multisite synthetic precipitation data. J Hydrol 345:121–133

    Article  Google Scholar 

  • Brommundt J, Bárdossy A (2007) Spatial correlation of radar and gauge precipitation data in high temporal resolution. Adv Geosci 10:103–109. doi:10.5194/adgeo-10-103-2007

    Article  Google Scholar 

  • Buishand TA, Brandsma T (2001) Multisite simulation of daily precipitation and temperature in the Rhine basin by nearest-neighbor resampling. Water Resour Res 37(11):2761–2776

    Article  Google Scholar 

  • Busuioc A, Chen D, Hellström C (2001) Temporal and spatial variability of precipitation in Sweden and its link with the large scale atmospheric circulation. Tellus 53A(3):348–367

    Google Scholar 

  • Chen D, Gong L, Xu C, Halldin S (2007) A high-resolution, gridded dataset for monthly temperature normals (1971–2000) in Sweden. Geografiska Annaler 89A(4):249–261

    Article  Google Scholar 

  • Diggle P, Ribeiro PJ (2007) Model-based geostatistics. Springer, New York, 228 p

    Google Scholar 

  • Garcia P, Zambudio N, Benarroch A (2002) Joint Rainfall Rate statistics for Pairs of Sites in Spanish Regions. COST action 280 “Propagation Impairment Mitigation for Millimetre Wave Radio Systems”, 1st International Workshop

  • Gong DY, Ho CH, Chen D, Qian Y, Choi YS, Kim J (2007) Weekly cycle of aerosol-meteorology interaction over China. J Geophys Res 112(D22202). doi:10.1029/2007JD008888

  • Gunst RF (1995) Estimating spatial correlations from spatial–temporal meteorological data. J Clim 8(10):2454–2470

    Article  Google Scholar 

  • Gustafsson M, Rayner D, Chen D (2010) Extreme rainfall events in southern Sweden: where does the moisture come from? Tellus 62A:605–616

    Google Scholar 

  • Haberlandt U, Ebner von Eschenbach AD, Buchwald I (2008) A space-time hybrid hourly rainfall model for derived flood frequency analysis. Hydrol Earth Syst Sci 12(6):1353–1367. doi:10.5194/hess-12-1353-2008

    Article  Google Scholar 

  • Hellström C (2005) Atmospheric conditions during extreme and non-extreme precipitation events in Sweden. Int J Climatol 25:631–648

    Article  Google Scholar 

  • Hurrel JW, Deser C (2009) North Atlantic climate variability: the role of the North Atlantic Oscillation. J Mar Syst 78:28–41

    Article  Google Scholar 

  • Hurrel JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic oscillation. In: The North Atlantic oscillation: climate significance and environmental impact. Geophysical Monograph Series, 134: 1–35

  • Jeong J-H, Walther A, Nikulin G, Chen D, Jones C (2011) Diurnal cycle of precipitation amount and frequency in Sweden: observation versus model simulation. Tellus A. doi:10.1111/j.1600-0870.2011.00517.x

  • Johansson B, Chen D (2005) Estimation of areal precipitation for runoff modelling using wind data: a case study in Sweden. Clim Res 29:53–61

    Article  Google Scholar 

  • Jones PD, Osborn TJ, Briffa KR (1997) Estimating sampling errors in large-scale temperature averages. J Clim 10(10):2548–2568

    Article  Google Scholar 

  • Linderson ML (2003) Spatial distribution of meso-scale precipitation in Scandinavia, Southern Sweden. Geografiska Annaler, Series A 85(2):183–196

    Article  Google Scholar 

  • Osborn TJ, Hulme M (1997) Development of a relationship between station and grid-box rainday frequencies for climate model evaluation. J Clim 10(8):1885–1908

    Article  Google Scholar 

  • Robeson SM, Shein KA (1997) Spatial coherence and decay of wind speed and power in the north-central United States. Phys Geogr 18(6):479–495

    Google Scholar 

  • Serinaldi F (2008) Analysis of inter-gauge dependence by Kendall's tau(K), upper tail dependence coefficient, and 2-copulas with application to rainfall fields. Stochastic Environmental Research and Risk Assessment 22(6):671–688. doi:10.1007/s00477-007-0176-4

    Article  Google Scholar 

  • Serinaldi F (2009) A multisite daily rainfall generator driven by bivariate copula-based mixed distributions. J Geophys Res 114. doi:10.1029/2008JD011258

  • SMHI (2009) Sveriges klimat (The climate of Sweden). In Swedish. Swedish Meteorological and Hydrological Institute. Available at http://www.smhi.se/kunskapsbanken/klimat/sveriges-klimat-1.6867). Accessed 19 September 2011

  • Tan PN, Steinbach M, Kumar V (2006) Introduction to data mining. Addison-Wesley, Reading, 769 p

    Google Scholar 

  • Uvo CB (2003) Analysis and regionalization of northern European winter precipitation based on its relationship with the North Atlantic Oscillation. Int J Climatol 23:1185–1194

    Article  Google Scholar 

  • Vedin H, Raab R (1995) Climate, Lakes and Rivers. National Atlas of Sweden. SNA Publishing, Stockholm, p 175

    Google Scholar 

  • Wern L, German J (2009) Korttidsnederbörd i Sverige 1995–2008. Meteorologi, 139/2009. SMHI

  • Wilks DS (1998) Multisite generalization of a daily stochastic precipitation generation model. J Hydrol 210(1–4):178–191

    Article  Google Scholar 

  • Yang C, Chandler RE, Isham VS, Wheater HS (2005) Spatial-temporal rainfall simulation using generalized linear models. Water Resour Res 41(11). doi:W1141510.1029/2004wr003739

  • Zheng XG, Katz RW (2008) Simulation of spatial dependence in daily rainfall using multisite generators. Water Resour Res 44(9). doi:W0940310.1029/2007wr006399

Download references

Acknowledgements

The authors are very grateful to the Swedish Meteorological and Hydrological Institute (SMHI) for providing the precipitation data, to Colin Jones at the Rossby Centre for valuable comments and discussions, and to the Swedish Research Council (VR), the Gothenburg Atmospheric Science Centre (GAC), and FORMAS (grant #2007-1048-8700∗51) for financial support to Deliang Chen and Alexander Walther.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agne Burauskaite-Harju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burauskaite-Harju, A., Grimvall, A., Achberger, C. et al. Characterising and visualizing spatio-temporal patterns in hourly precipitation records. Theor Appl Climatol 109, 333–343 (2012). https://doi.org/10.1007/s00704-011-0574-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-011-0574-x

Keywords

Navigation