Skip to main content

Advertisement

Log in

Evapotranspiration of deforested areas in central and southwestern Amazonia

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Considering the high rates of evapotranspiration of Amazonian forests, understanding the impacts of deforestation on water loss rates is important for assessing those impacts on a regional and global scale. This paper quantifies evapotranspiration rates in two different pasture sites in Amazonia and evaluates the differences between the sites. In both places, measured evapotranspiration varies seasonally, decreasing during the dry season. The decrease is higher at the southwestern Amazonia site, while at the central Amazonia site, the decrease is less pronounced. During the dry season, average values of evapotranspiration are around 2.2 ± 0.6 mm day−1 in central Amazonia and 2.4 ± 0.6 mm day−1 in southwestern Amazonia, while during the wet season, those values are 2.1 ± 0.6 mm day−1 in central Amazonia and 3.5 ± 0.8 mm day−1 in southwestern Amazonia. On an annual basis, the pasture in southwestern Amazonia has higher evapotranspiration than in central Amazonia. We conclude that the main reason for this difference is the lower available energy in the wet season at the central Amazonian site, combined with a lower leaf area index at this site during the whole year. Still, the evapotranspiration is significantly controlled by the vegetation, which is well coupled with the local moisture conditions in the dry season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Asner GP, Townsend AR, Bustamante MMC, Nardoto GB, Olander LP (2004) Pasture degradation in the central Amazon: linking changes in carbon and nutrient cycling with remote sensing. Glob Chang Biol 10:844–862. doi:10.1111/j.1529-8817.2003.00766.x

    Article  Google Scholar 

  • Bastable HG, Shuttleworth WJ, Dallarosa RGL (1993) Observations of climate, albedo, and surface radiation over cleared and undisturbed Amazonian forest. Int J Climatol 13:783–796

    Article  Google Scholar 

  • Chauvel A (1982) Os latossolos amarelos, álicos, argilosos dentro dos ecossistemas das bacias experimentais do INPA e da região vizinha. Acta Amazonica 12:47–60

    Google Scholar 

  • Chauvel A, Lucas Y, Boulet R (1987) On the genesis of the soil mantle of the region of Manaus, central Amazonia, Brazil. Experientia 43:234–241

    Article  Google Scholar 

  • Costa MH, Biajoli MC, Sanches L, Malhado ACM, Hutyra LR, Da Rocha HR, de Aguiar RG, Araújo AC (2010) Atmospheric versus vegetation controls of Amazonian tropical rain forest evapotranspiration: are the wet and seasonally dry rain forests any different? J Geophys Res 115:G04021. doi:10.1029/2009JG001179

    Article  Google Scholar 

  • D’Almeida C, Vörösmarty CJ, Hurtt GC, Marengo JA, Lawrence Dingman S, Keim BD (2007) The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution. Int J Climatol 27:633–647

    Article  Google Scholar 

  • Da Rocha HR, Nobre CA, Bonatti JP, Wright IR, Sellers PJ (1996) A vegetation–atmosphere interaction study for Amazonia deforestation using field data and a ‘single column’ model. Quart J Roy Meteor Soc 122:567–594

    Google Scholar 

  • Da Rocha HR, Manzi AO, Cabral OMR, Miller S, Goulden ML, Saleska SR, Restrepo-Coupe N, Wofsy SC, Borma LS, Artaxo P, Vourlitis G, Nogueira JS, Cardoso FL, Nobre AD, Kruijt B, Freitas HC, Von Randow C, Aguiar RG, Maia JF (2009) Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. J Geophys Res 114:G00B12

    Article  Google Scholar 

  • Davidson EA, Carvalho CJR, Figueira AM, Ishida FY, Ometto JPHB, Nardoto GB, Saba RT, Hayashi SN, Leal EC, Vieira ICG, Martinelli LA (2007) Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447:995–999. doi:10.1038/nature05900

    Article  Google Scholar 

  • De Bruin HAR, Kohsiek W, Van den Hurk BJJM (1993) A verification of some methods to determine the fluxes of momentum, sensible heat, and water vapor using standard deviation and structure parameter of scalar meteorological quantities. Bound-Layer Meteorol 63:231–257

    Article  Google Scholar 

  • Dickinson R, Henderson-Sellers A (1988) Modelling tropical deforestation: a study of GCM land-surface parameterizations. Quart J Roy Meteor Soc 114:439–462

    Article  Google Scholar 

  • Dolman AJ, Stewart JB, Cooper JD (1988) Predicting forest transpiration from climatological data. Agric Forest Meteorol 42:339–353

    Article  Google Scholar 

  • Dolman AJ, Gash JHC, Roberts J, Shuttleworth WJ (1991) Stomatal and a surface conductance of tropical rainforest. Agric Forest Meteorol 54:303–318

    Article  Google Scholar 

  • Falge E, Baldocchi D, Olson R et al (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric Forest Meteorol 107:43–69

    Article  Google Scholar 

  • Finnigan J, Clement R, Malhi Y, Leuning R, Cleugh HA (2003) A re-evaluation of long-term flux measurement techniques. Part I: Averaging and coordinate rotation Bound-Layer Meteor 107:1–48

    Article  Google Scholar 

  • Foken T (2008) The energy balance closure problem: an overview. Ecol Appl 18:1351–1367. doi:10.1890/06-0922.1

    Article  Google Scholar 

  • Franken W, Leopoldo PR (1984) Hydrology of catchment areas of Central-Amazonian forest streams. In: Sioli H (ed) The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. Junk, Dordrecht, pp 501–519

    Google Scholar 

  • Hasler N, Avissar R (2007) What controls evapotranspiration in the Amazon basin? J Hydrometeorol 8:380–395

    Article  Google Scholar 

  • Hartogensis OK, Watts CJ, Rodriguez JC, De Bruin HAR (2003) Derivation of the effective height for scintillometers: La Poza experiment in Northwest Mexico. J Hydrometeorol 4:915–928

    Article  Google Scholar 

  • Hemakumara HM, Chandrapala L, Moene AF (2003) Evapotranspiration fluxes over mixed vegetation areas measured from large aperture scintillometer. Agr Water Manag 58:109–122

    Article  Google Scholar 

  • Hill RJ (1992) Review of optical scintillation methods of measuring the refractive-index spectrum, inner scale and surface fluxes. Waves Random Media 2:179–201

    Article  Google Scholar 

  • Hodnett MG, Da Silva LP, Da Rocha HR, Senna RC (1995) Seasonal soil–water storage changes beneath central Amazonian rain-forest and pasture. J Hydrol 170:233–254

    Article  Google Scholar 

  • Hodnett MG, Oyama MD, Tomasella J, Marques Filho AO (1996a) Comparison of long-term soil water storage behaviour under pasture and forest in three areas of Amazonia. In: Gash JHC, Nobre CA, Roberts J, Victoria RL (eds) Amazonian deforestation and climate. Wiley, Chichester, pp 57–77

    Google Scholar 

  • Hodnett MG, Tomasella J, Marques Filho AO, Oyama MD (1996b) Deep soil water uptake by forest and pasture in central Amazonia: predictions from long-term daily rainfall data using a simple water balance model. In: Gash JHC, Nobre CA, Roberts J, Victoria RL (eds) Amazonian deforestation and climate. Wiley, Chichester, pp 79–99

    Google Scholar 

  • INPE (2010) Monitoramento da Floresta Amazônica Brasileira por Satélite—Projeto PRODES. Instituto Nacional de Pesquisas Espaciais website, São José dos Campos, SP, Brasil http://www.obt.inpe.br/prodes/prodes_1988_2010.htm

  • Jarvis PG (1976) The interpretation of the variations in leafwater potential and stomatal conductances found in canopies in the field. Philos Trans Roy Soc B 273:593–610

    Article  Google Scholar 

  • Jarvis PG, McNaughton KG (1986) Stomatal control of transpiration. Adv Ecol Res 15:1–49

    Article  Google Scholar 

  • Kanda M, Inagaki A, Letzel MO, Raasch S, Watanabe T (2004) LES study of the energy imbalance problem with eddy covariance fluxes. Bound-Layer Meteorol 110:311–404

    Article  Google Scholar 

  • Laurence WF, Williamson GB (2001) Positive feedbacks among forest fragmentation, drought, and climate change in the Amazon. Conserv Biol 15:1529–1535

    Article  Google Scholar 

  • Marengo JA, Miller JR, Russell GL, Rosenzweig GI et al (1994) Calculations of river-runoff in the GISS GCM—impact of a new land-surface parameterization and river routing model on the hydrology of the Amazon River. Clim Dynam 10:349–361

    Article  Google Scholar 

  • Marengo JA, Sanches M, Cunningham C, Camargo H, Nobre CA (2000) Characteristics and variability of the atmospheric water balance in the Amazon basin. In: Proceedings of XI Brazilian Congress of Meteorology, Brazilian Society of Meteorology, Rio de Janeiro

  • Marques JD (2009) Influência de atributos físicos e hídricos do solo na dinâmica do carbono orgânico sob diferentes coberturas vegetais na Amazônia Central. Ph.D. thesis (in Portuguese), INPA/Federal University of Amazonas, Manaus, Brazil

  • Massman WJ, Lee X (2002) Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agric Forest Meteorol 113:121–144

    Article  Google Scholar 

  • McGrath DA, Smith CK, Gholz HL, Oliveira FA (2001) Effects of land-use change on soil nutrient dynamics in Amazonia. Ecosystems 4:625–645

    Article  Google Scholar 

  • Meijninger WML, Hartogensis OK, Kohsiek W, Hoedjes JCB, Zuurbier RM, De Bruin HAR (2002) Determination of area averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface—Flevoland field experiment. Bound-Layer Meteorol 105:37–62

    Article  Google Scholar 

  • Moncrieff JB, Massheder JM, De Bruin HAR, Elbers JA, Friborg T, Heusinkveld B, Kabat P, Scott S, Soegaard H, Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J Hydrol 189:589–611

    Article  Google Scholar 

  • Nee M (1995) Flora preliminar do Projeto Dinâmica Biológica de Fragmentos Florestais (PDBFF). New York Botanic Garden e INPA/Smithsonian projeto Dinâmica Biológica de Fragmentos Florestais. Manaus, 264 pp

  • Negron-Juarez RI, Hodnett MG, Fu R, Goulden ML, Von Randow C (2007) Control of dry season evapotranspiration over the Amazonian forest as inferred from observations at a southern Amazon forest site. J Clim 20:2827–2839

    Article  Google Scholar 

  • Nobre CA, Fisch G, Da Rocha HR, Lyra RF, Da Rocha EP, Da Costa ACL, Ubarana VN (1996) Observations of the atmospheric boundary layer in Rondônia. In: Gash JHC, Nobre CA, Roberts J, Victoria RL (eds) Amazonian deforestation and climate. Wiley, Chichester, pp 437–458

    Google Scholar 

  • Oliveira MBL, Von Randow C, Manzi AO, Alvala R, Sa LDA, Souza A (2006) Fluxos Turbulentos de Energia Sobre o Pantanal Sul Matogrossense (in Portuguese). Revista Brasileira de Meteorologia 21:371–377

    Article  Google Scholar 

  • Ranzani G (1980) Identificação e caracterização de alguns solos da Estação Experimental de Silvicultura Tropical do INPA (in Portuguese). Acta Amazonica 10:7–41

    Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Valentini R et al (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biol 11:1424–1439

    Article  Google Scholar 

  • Rodriguez DA, Tomasella J, Linhares C (2010) Is the forest conversion to pasture affecting the hydrological response of Amazonian catchments? Signals from the Ji-Paraná Basin. Hydrol Process 24:1254–1269

    Google Scholar 

  • Salati E, Nobre CA (1991) Possible climatic impacts of tropical deforestation. Clim Chang 19:177–196

    Article  Google Scholar 

  • Shuttleworth WJ, Gash JHC, Lloyd C, Moore CJ, Roberts JM, Marques AO, Fisch G, Silva VP, Ribeiro MN, Molion LCB, Sá LDA, Nobre CA, Cabral OMR, Patel SR, Moraes JC (1984) Eddy correlation measurements of energy partition for Amazonian forest. Quart J Roy Meteor Soc 110:1143–1162

    Article  Google Scholar 

  • Soares WR, Marengo JA (2009) Assessments of moisture fluxes east of the Andes in South America in a global warming scenario. Int J Climatol 29:1395–1414. doi:10.1002/joc.1800

    Article  Google Scholar 

  • Stewart JB (1988) Modelling surface conductance of pine forest. Agric Forest Meteorol 43:19–35

    Article  Google Scholar 

  • Tomasella J, Hodnett MG, Cuartas LA, Nobre AD, Waterloo MJ, Oliveira SM (2008) The water balance of an Amazonian micro-catchmente: the effect of interannual variability of rainfall on hydrological behaviour. Hydrol Process 22:2133–2147

    Article  Google Scholar 

  • Victoria RL, Martinelli LA, Mortatti J, Richey J (1991) Mechanisms of water recycling in the Amazon basin: isotopic insights. Ambio 20:384–387

    Google Scholar 

  • von Randow C, Manzi AO, Kruijt B, Oliveira PJ, Zanchi FB et al (2004) Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theor Appl Climatol 78:5–26

    Google Scholar 

  • Vörösmarty CJ, Moore B, Gildea MP, Peterson B, Melillo J, Kicklighter D, Raich J, Rastetter E, Steudler P (1989) A continental-scale model of water balance and fluvial transport: application to South America. Global Biogeochem Cy 3:241–265

    Article  Google Scholar 

  • Werth D, Avissar R (2004) The regional evapotranspiration of the Amazon. J Hydrometeorol 5:100–109

    Article  Google Scholar 

  • Wesely ML (1976) A comparison of two optical methods for measuring line averages of thermal exchanges above warm water surfaces. J Appl Meteorol 15:1177–1188

    Article  Google Scholar 

  • Wright IR, Gash JHC, Da Rocha HR, Shuttleworth WJ, Nobre CA, Carvalho PRA, Leitao MVBR, Maitelli GT, Zamparoni CAGP (1992) Dry season micrometeorology of Amazonian ranchland. Quart J Roy Meteor Soc 118:1083–1099

    Article  Google Scholar 

  • Wright IR, Manzi AO, Da Rocha HR (1995) Surface conductance of Amazonian pasture: model application and calibration for canopy climate. Agric Forest Meteorol 75:51–70

    Article  Google Scholar 

  • Wright IR, Gash JHC, Da Rocha HR, Roberts JM (1996) Modelling surface conductance for Amazonian pasture and forest. In: Gash JHC, Nobre CA, Roberts JM, Victoria RL (eds) Amazonian deforestation and climate. Wiley, Chichester, pp 437–458

    Google Scholar 

  • Zanchi FB, Waterloo MJ, Aguiar LJG, von Randow C, Kruijt B, Cardoso FL, Manzi AO (2009) Estimate of the leaf area index (LAI) and biomass in pasture in the state of Rondônia – Brazil (in Portuguese). Acta Amazonica 39:335–348

    Google Scholar 

  • Zeng N (1998) Understanding climate sensitivity of tropical deforestation in a mechanistic model. J Clim 11:1969–1975

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the help of MSc. Flavio de Carvalho Magina and Antonio Huxley do Nascimento with the instrumentation and operation of Colosso site and MSc. Fabrício Berton Zanchi for operation of FNS site. We thank the institutions that hosted the first author during the field work and analysis of the data: Wageningen University and Research Centre, the Netherlands and INPE and INPA, Brazil. Thanks also to the Large-Scale Biosphere–Atmosphere Experiment in Amazonia for logistical support during the field work and data collection at FNS. The field work received funding from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Financiadora de Estudos e Projetos (FINEP) and also from The Netherlands Foundation for the Advancement of Tropical Research (WOTRO), which also financed R.C.S. von Randow’s Ph.D. research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita C. S. von Randow.

Appendix

Appendix

Table 5 Instruments installed at FNS and CO sites

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Randow, R.C.S., von Randow, C., Hutjes, R.W.A. et al. Evapotranspiration of deforested areas in central and southwestern Amazonia. Theor Appl Climatol 109, 205–220 (2012). https://doi.org/10.1007/s00704-011-0570-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-011-0570-1

Keywords

Navigation