Skip to main content

Advertisement

Log in

Analysis of the climatic constraints to maize production in the current agricultural region of Argentina—a probabilistic approach

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

A simple method of analysis was proposed to characterize the impact of climatic conditions of a wide region of Argentina (from 27°05′S to 35°48′S, from 61°5′W to 64°21′W) on potential maize (Zea mays L.) grain yield, and the occurrence of various climatic constraints (low temperatures and low soil water content, frost, drought stress and heat stress) along the cycle. The analysis was based on previous studies of the eco-physiology of maize crops and the use of climatic records of six locations in the region under study. Results were analyzed using a probabilistic method, later organized as a checklist to consider when deciding on sowing date in a location of the region. Thus, for each production scenario (combination of location and sowing date), farmers would have a tool enabling them to pay particular attention to the restrictions more likely to occur, to include some cultural practices to avoid or mitigate the most severe climatic constraint to maize production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aiken RM (2005) Applying thermal time scales to sunflower development. Agron J 97:746–754

    Article  Google Scholar 

  • Andrade FH (1995) Analysis of growth and yield of maize, sunflower and soybean grown at Balcarce, Argentina. Field Crops Res 41:1–12

    Article  Google Scholar 

  • Andrade FH, Abbate PE (2005) Response of maize and soybean to variability in stand uniformity. Agron J 97:1263–1269

    Article  Google Scholar 

  • Andrade FH, Uhart SA, Arguissain GG, Ruiz RA (1992) Radiation use efficiency of maize grown in a cool area. Field Crops Res 28:345–354

    Article  Google Scholar 

  • Andrade FH, Uhart SA, Cirilo AG (1993) Temperature affects radiation use efficiency in maize. Field Crops Res 32:17–25

    Article  Google Scholar 

  • Andrade FH, Vega C, Uhart S, Cirilo A, Cantarero M, Valentinuz O (1999) Kernel number determination in maize. Crop Sci 39:453–459

    Article  Google Scholar 

  • Barros VA (2008) Adaptation to climatic trends: lessons from the argentine experience. In: Leary N, Burton I, Adejuwon J, Barros V, Lasco R, Kulkarni JI (eds) Climate change and adaptation. Earthscan, London, pp 296–350

    Google Scholar 

  • Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Phys 31:491–543

    Article  Google Scholar 

  • Capristo PR, Rizzalli RH, Andrade FH (2007) Ecophysiological yield components of maize hybrids with contrasting maturity. Agron J 99:1111–1118

    Article  Google Scholar 

  • Cárcova J, Maddonni GA, Ghersa CM (1998) Crop water stress index of three maize hybrids grown in soils with different quality. Field Crops Res 55:165–174

    Article  Google Scholar 

  • Cárcova J, Maddonni GA, Ghersa CM (2000) Long-term cropping effects on maize: crop evapotranspiration and grain yield. Agron J 92:1256–1265

    Article  Google Scholar 

  • Commuri PD, Jones RJ (2001) High temperatures during endosperm cell division in maize: a genotypic comparison under in vitro and field conditions. Crop Sci 41:1122–1130

    Article  Google Scholar 

  • De Fina AL, Ravelo AC (1979) Rocio-Heldas. In: De Fina AL, Ravelo AC (eds) Climatología y fenología agrícolas. Editorial Universitaria de Buenos Aires, Buenos Aires, pp 199–216

    Google Scholar 

  • DeMelo-Abreu JP, Barranco D, Cordeiro AM, Tous J, Rogado BM, Villalobos FJ (2004) Modelling olive flowering date using chilling for dormancy release and thermal time. Agric Meteorol 125:117–127

    Article  Google Scholar 

  • Dirección de bosques (2007) Informe sobre deforestación en Argentina. 10 pp

  • Echarte L, Andrade F (2003) Harvest index stability of Argentinean maize hybrids released between 1965 and 1993. Field Crops Res 82:1–12

    Article  Google Scholar 

  • Fabrizzi KP, García FO, Costa JL, Picone LI (2005) Soil water dynamics, physical properties and corn and wheat responses to minimum and no-tillage systems in the southern Pampas of Argentina. Soil Tillage Res 81:57–69

    Article  Google Scholar 

  • Fernandez F, Quiroga A, Noellemeyer E, Montoya J, Hitzmann B, Peinemann N (2008) A study of the effect of the interaction between site-specific conditions, residue cover and weed control on water storage during fallow. Agric Water Manage 95:1028–1040

    Article  Google Scholar 

  • Flénet F, Kiniry J, Board J, Westgate M, Reicosky DC (1996) Row spacing effects on light extinction coefficients of corn, sorghum, soybean, and sunflower. Agron J 88:185–190

    Article  Google Scholar 

  • Giauffret C, Bonhomme R, Derieux M (1995) Genotypic differences for temperature response of leaf appearance rate and leaf elongation rate in field-grown maize. Agronomie 15:123–137

    Article  Google Scholar 

  • Gosse G, Varlet-Grancher C, Bonhomme R, Chartier M, Allirand JM, Lemaire G (1986) Production maximale de matiere seche et rayonnement solaire intercepté par un couvert vegetal. Agronomie 6:47–56

    Article  Google Scholar 

  • Hall AJ, Vilella F, Trapani N, Chimenti CA (1982) The effects of water stress and genotype on the dynamics of pollen-shedding and silking in maize. Field Crops Res 5:349–363

    Article  Google Scholar 

  • Hall AJ, Rebella CM, Ghersa CM, Cullot Ph (1992) Field–crop systems of the Pampas. In: Pearson CJ (ed) Ecosystems of the world. Field crops ecosystems. Elsevier Scientific, Amsterdam, pp 413–450

    Google Scholar 

  • Hare PD, Cress WA, Staden JV (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  Google Scholar 

  • Hodges T, Evans DW (1990) Leaf emergence and leaf duration related to thermal time calculations in Ceres-Maize. Agron J 84:724–730

    Article  Google Scholar 

  • Jamieson PD, Semenov MA, Brooking IR, Francis GS (1998) Sirius: a mechanistic model of wheat response to environmental variation. Eur J Agron 8:161–179

    Article  Google Scholar 

  • Jones CA, Kiniry JR (1986) CERES-Maize: a simulation model of maize growth and development. Texas A&M Univ. Press, College Station

    Google Scholar 

  • Kiniry JR, Ritchie JT, Musser RL (1983) Dynamic nature of the photoperiod response in maize. Agron J 75:700–703

    Article  Google Scholar 

  • Kiniry JR, Jones CA, O’toole JC, Blanchet R, Cabelguenne M, Spanel DA (1989) Radiation-use efficiency in biomass accumulation prior to grain-filling for five grain-crop species. Field Crops Res 20:51–64

    Article  Google Scholar 

  • Li Y, Cui J, Zhang T, Zhao H (2003) Measurement of evapotranspiration of irrigated spring wheat and maize in a semi-arid region of north China. Agric Water Manage 61:1–12

    Article  Google Scholar 

  • Liu W, Tollenaar M, Stewart G, Deen W (2004) Response of corn grain yield to spatial and temporal variability in emergence. Crop Sci 44:847–854

    Article  Google Scholar 

  • Lobell DB, Bänziger M, Magorokosho C, Bindiganavile V (2011) Non linear heat effects on African maize as evidenced by historical yield trials. Lett Nat Clim Change

  • Maddonni GA, Otegui ME (1996) Leaf area, light interception, and crop development in maize. Field Crops Res 48:81–87

    Article  Google Scholar 

  • Maddonni GA, Iglesias Pérez ME, Cárcova J, Ghersa CM (1999) Flowering dynamic of maize hybrids grown in soils with contrasting agricultural history. Maydica 44:141–147

    Google Scholar 

  • Maton L, Bergez J-E, Leenhardt D (2007) Modelling the days which are agronomically suitable for sowing maize. Eur J Agron 27:123–129

    Article  Google Scholar 

  • Mercau JL, Otegui ME (2002) Granero: maíz tardío y maíz de segunda. Software. Departamento de Producción Vegetal FAUBA y Monsanto Argentina SA

  • Monteith JL (1965) Radiation and crops. Exp Agric 1:241–251

    Article  Google Scholar 

  • Muchow RC, Carberry PS (1989) Environmental control of phenology and leaf growth in a tropical-adapted maize. Field Crops Res 20:221–236

    Article  Google Scholar 

  • Otegui ME, Bonhomme R (1998) Grain yield components in maize: I. Ear growth and kernel set. Field Crops Res 56:247–256

    Article  Google Scholar 

  • Otegui ME, Melon S (1997) Kernel set and flower synchrony within the ear of maize: I. Sowing date effects. Crop Sci 37:441–447

    Article  Google Scholar 

  • Otegui ME, Nicolini MG, Ruiz RA, Dodds PA (1995a) Sowing date effects on grain yield components for different maize genotypes. Agron J 87:29–33

    Article  Google Scholar 

  • Otegui ME, Andrade FH, Suero EE (1995b) Growth, water use and kernel abortion of maize subjected to drought at silking. Field Crops Res 40:87–94

    Article  Google Scholar 

  • Otegui ME, Ruiz RA, Petruzzi D (1996) Modeling hybrid and sowing date effects on potential grain yield of maize in a humid temperate region. Field Crops Res 47:167–174

    Article  Google Scholar 

  • Padilla J, Otegui ME, Maddonni GA (2004) Predicting the dynamic of seedling emergence in maize. ASA, CSSA, SSSA Annual Meeting, Seattle

    Google Scholar 

  • Pommel B, Bonhomme R (1998) Variations in the vegetative and reproductive systems in individual plants of an heterogeneous maize crop. Eur J Agron 8:39–49

    Article  Google Scholar 

  • Pommel B, Mouraux D, Cappellen O, Ledent JF (2002) Influence of delayed emergence and canopy skips on the growth and development of maize plants: a plant scale approach with CERES-Maize. Eur J Agron 16:263–277

    Article  Google Scholar 

  • Ratliff LF, Ritchie JT, Cassel DK (1983) Field-measured limits of soil water availability as related to laboratory-measured properties. Soil Sci 47:764–769

    Article  Google Scholar 

  • Rattalino Edreira JI, Budakli Carpici B, Sammarro D, Otegui ME (2011) Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids Field Crops Res 123:62–73

    Google Scholar 

  • Ritchie JT (1998) Soil water balance and plant stress. In: Tsuji GY, Hoogenboom G, Thornton PK (eds) Understanding options for agricultural production. Kluwer Academic Publishing, The Netherlands, pp 41–54

    Google Scholar 

  • Ritchie JT, NeSmith DS (1991) Temperature and Crop development. In: Hank J, Ritchie JT (eds) Modeling plant and soil systems. ASA-CSSA-SSSA, Madison, WI, pp 5–29

    Google Scholar 

  • Ritchie SW, Hanway JJ, Benson GO (1993) How a corn plant develops. Special Report 48. Iowa State University

  • Sadras VO, Milroy SP (1996) Soil-water thresholds for the response of leaf expansion and gas Exchange: a review. Field Crops Res 47:253–266

    Article  Google Scholar 

  • Silberfaden F (2010) Evaluación cuantitativa del efecto de las bajas temperaturas y el contenido hídrico del suelo sobre la germinación y emergencia en semillas de maíz. Tesina de grado, Facultad de Agronomia, Universidad de Buenos Aires, Buenos Aires, 57 pp

    Google Scholar 

  • Sinclair TR, Bennet JM, Muchow RC (1990) Relative sensitivity of grain yield and biomass accumulation to drought in field-grown maize. Crop Sci 30:690–693

    Article  Google Scholar 

  • Sivakumar MVK, Virmani SM (1984) Crop productivity in relation to interception of photo-synthetically active radiation. Agric For Meteorol 31:131–141

    Article  Google Scholar 

  • Soil Survey Staff (2010) Keys to soil taxonomy, 11th edn. USDA-Natural Resources Conservation Service, Washington

    Google Scholar 

  • Soriano A (1991) Río de la Plata grasslands. In: Coupland RT (ed) Ecosystems of the world. Natural grasslands. Elsevier Scientific, Amsterdam, pp 367–407

    Google Scholar 

  • Suyker A, Verma S (2009) Evapotranspiration of irrigated and rainfed maize–soybean cropping systems. Agric For Meteorol 149:443–452

    Article  Google Scholar 

  • Tan DKY, Birch CJ, Wearing AH, Ricker KG (2000) Predicting broccoli development II. Comparison and validation of thermal time models. Sci Hort 86:89–101

    Article  Google Scholar 

  • Tanaka W, Maddonni GA (2008) Pollen source and post-flowering source-sink ratio effects on maize kernel weight and oil concentration. Crop Sci 48:666–677

    Article  Google Scholar 

  • Tollenaar M, Dwyer LM, Stewart DW (1992) Ear and kernel formation in maize hybrids representing three decades of grain yield improvements in Ontario. Crop Sci 32:432–438

    Article  Google Scholar 

  • Van Ittersum MK, Rabbinge R (1997) Concepts in ecology for analysis and quantification of agricultural input-output combinations. Field Crops Res 52:197–208

    Article  Google Scholar 

  • Vinocur MG, Ritchie JT (2001) Maize leaf development biases caused by air–apex temperature differences. Agron J 93:767–772

    Article  Google Scholar 

  • Wiatrak PJ, Wright DL, Marois JJ, Sprenkel R (2004) Corn hybrids for late planting in the Southeast. Agron J 96:1118–1124

    Article  Google Scholar 

  • Wilhelm EP, Mullen RE, Keeling PL, Singletary GW (1999) Heat stress during grain filling in maize: effects on kernel growth and metabolism. Crop Sci 39:1733–1741

    Article  Google Scholar 

  • Williams WP, Sagers JB, Hanten JA, Davis FM, Buckley PM (1997) Transgenic corn evaluated for resistance to fall armyworm and Southwestern corn borer. Crop Sci 37:957–962

    Article  Google Scholar 

  • Wilson DR, Muchow RC, Murgatroyd CJ (1995) Model analysis of temperature and solar radiation limitations to maize potential productivity in a cool climate. Field Crops Res 43:1–18

    Article  Google Scholar 

  • Zhao W, Liu B, Zhang Z (2010) Water requirements of maize in the middle Heihe River basin, China. Agric Water Manage 97:215–223

    Article  Google Scholar 

Download references

Acknowledgement

The author wishes to thank Jorge Mercau, José Micheloud, Gabriel Beligoi, Eileen Whitechurch, producers and technicians of the Argentina Association of Regional Consortiums for Agricultural Experimentation (AACREA) and the Argentina's Farmers Association of Direct Seeding (AAPRESID) by the various exchanges in the early stages of this work. Gustavo Maddonni is a researcher of the National Council of Scientific and Technical Research (CONICET). This work was partially funded by the Regional Fund for Agricultural Technology (FONTAGRO Project 8031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Angel Maddonni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maddonni, G.A. Analysis of the climatic constraints to maize production in the current agricultural region of Argentina—a probabilistic approach. Theor Appl Climatol 107, 325–345 (2012). https://doi.org/10.1007/s00704-011-0478-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-011-0478-9

Keywords

Navigation