Skip to main content
Log in

Stratospheric intrusion index (SI2) from baseline measurement data

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This work introduces an index to identify deep stratospheric intrusions (SI) from measurement data alone, without requiring additional model-based information. This stratospheric intrusion index (SI2) provides a qualitative description of SI event behaviour by summarizing the information from different tracer variations. Moreover, being independent from any model constraint, the SI2 can also represent a valid tool to help in evaluating the capacity of chemistry-transport and chemistry-climate models in simulating deep stratosphere to troposphere transport. The in situ variations of ozone, beryllium-7 and relative humidity were used to calculate the index. The SI2 was applied on 8-year data recorded at the regional GAW station of Mt. Cimone (2165 m asl; 44.10N, 10.70E: Italy). The comparison of the SI2 behaviour with a pre-existing database obtained by also using model products, permitted us to tune a SI2-threshold value capable of identifying SI events efficiently. In good agreement with previous climatological studies across Europe, at Mt. Cimone, the averaged monthly SI frequency obtained by the SI2 analysis showed a clear seasonal cycle with a winter maximum and a spring-summer minimum. These results suggest that the presented methodology is efficient for both identifying SI events and evaluating their annual frequency at the considered baseline measurement site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beekmann M, Ancellet G, Megie G (1994) Climatology of tropospheric ozone in southern Europe and its relation with potential vorticity. J Geophys Res 104:301–321

    Google Scholar 

  • Bonasoni P, Stohl A, Cristofanelli P, Calzolari F, Colombo T, Evangelisti F (2000) Background ozone variations at Mt. Cimone Station. Atmos Environ 34:5183–5189

    Article  Google Scholar 

  • Buzzi A, Giovanelli G, Nanni T, Tagliazucca M (1985) A case study of stratospheric ozone descent to the lower troposphere during APLEX. Beitr Phys Atmos 58:339–406

    Google Scholar 

  • Chevalier A, Gheusi F, Delmas R, Ordónez C, Sarrat C, Zbinden R, Thouret V, Athier G, Cousin J-M (2007) Influence of altitude on ozone levels and variability in the lower troposphere: a ground-based study for western Europe over the period 2001–2004. Atmos Chem Phys 7:4311–4326

    Google Scholar 

  • Collins WJ, Derwent RG, Garnier B, Johnson CE, Sanderson MG, Stevenson DS (2003) Effect of stratosphere-troposphere exchange on the future tropospheric ozone trend. J Geophys Res 108, D128528. doi:10.1029/2002JD002617

    Article  Google Scholar 

  • Cristofanelli P, Bonasoni P, Tositti L, Bonafè U, Calzolari F, Evangelisti F, Sandrini S, Stohl A (2006) A six-year analysis of stratospheric intrusions and their influence on ozone at Mt. Cimone (2165 m a.s.l.). J Geophys Res 111, D03306. doi:10.1029/2005JD006553

    Article  Google Scholar 

  • Cristofanelli P, Bonasoni P, Carboni G, Calzolari F, Casarola L, Zauli Sajani S, Santaguida R (2007) Anomalous high ozone concentrations recorded at a high mountain station in Italy in summer 2003. Atmos Environ 41:1383–1394

    Article  Google Scholar 

  • Crutzen PJ (1973) A discussion to the chemistry of some minor constituents in the stratosphere and troposphere. Pure Appl Geophys 106:1385–1399

    Article  Google Scholar 

  • Danielsen EF (1968) Stratospheric-tropospheric exchange based on radioactivity, ozone and potentilal vorticity. J Atmos Sci 25:502–518

    Article  Google Scholar 

  • Davies TD, Schuepbach E (1994) Episodes oh high ozone concentrations at the earth’s surface resulting from transport down from the upper troposphere/lower stratosphere: a review and case studies. Atmos Environ 28:53–68

    Article  Google Scholar 

  • Elbern H, Kowol J, Sladkovic R, Ebel A (1997) Deep stratospheric intrusions: a statistical assessment with model guided analysis. Atmos Environ 31:3207–3226

    Article  Google Scholar 

  • Eyring V, Harris NRP, Rex M, Shepherd TG, Fahey DW, Amanatidis GT, Austin J, Chipperfield MP, Dameris M, De PM, Forster F, Gettelman A, Graf HF, Nagashima T, Newman PA, Pawson S, Prather MJ, Pyle JA, Salawitch RJ, Santer BD, Waugh DW (2005) A strategy for process-oriented validation of coupled chemistry-climate models. Bull Am Meteorol Soc 86(8):1117–1133

    Article  Google Scholar 

  • Fischer H, Kormann R, Klüpfel T, Gurk C, Königstedt R, Parchatka U, Mühle J, Rhee TS, Brenninkmeijer CAM, Bonasoni P, Stohl A (2003) Ozone production and trace gas correlations during the June 2000 MINATROC intensive measurement campaign at Mt. Cimone. Atmos Chem Phys 3:725–738

    Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing, climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York

    Google Scholar 

  • Fuhrer J, Booker F (2003) Ecological issues related to ozone: agricultural issues. Environ Int 29:141–154

    Article  Google Scholar 

  • Gauss M et al (2003) Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere. J Geophys Res 108(D9), 4292. doi:10.1029/2002JD002624

    Article  Google Scholar 

  • Gerasopoulos E, Zanis P, Stohl A, Papastefanou C, Ringer W, Tobler L, Hubener S, Gaggler HW, Kanter HJ, Tositti L, Sandrini S (2001) A climatology of 7Be at four high-altitude stations at the Alps and the Northern Apennines. Atmos Environ 35:6347–6360

    Article  Google Scholar 

  • Gerasopoulos E, Zerefos CS, Papastefanou C, Zanis P, O’Brien K (2003) Low frequency variability of beryllium-7 surface concentrations over the Eastern Mediterranean. Atmos Environ 37:1745–1756

    Article  Google Scholar 

  • Gerasopoulos E, Zanis P, Papastefanou C, Zerefos CS, Ioannidouc A, Wernli H (2006) A complex case study of down to the surface intrusions of persistent stratospheric air over the Eastern Mediterranean. Atmos Environ 40:4113–4125

    Article  Google Scholar 

  • Goering MA, Gallus WA Jr, Olsen MA, Stanford JL (2001) Role of stratospheric air in a severe weather event: analysis of potential vorticity and ozone. J Geophys Res 106(D11):11.813–11.823

    Article  Google Scholar 

  • Haynes PH, Marks CJ, McIntyre ME, Shepherd TG, Shine KP (1991) On the “Downward Control” of extra-tropical diabatic circulations by eddy-induced mean zonal forces. J Atmos Sci 48:651–678

    Article  Google Scholar 

  • Henne S, Furger M, Prévôt ASH (2005) Climatology of mountain venting-induced elevated moisture layers in the lee of Alps. J Appl Meteorol 44:620–633

    Article  Google Scholar 

  • Hoek GP, Fisher B, Brunekreef E, Lebret E, Hofsschreuder O, Mennem G (1993) Acute effects of ambient ozone on pulmonary function of children in Netherlands. Am Rev Respir Dis 147:11–117

    Google Scholar 

  • Hoerling MP, Schaack TK, Lenzen AJ (1991) Global objective tropopause analysis. Mon Weather Rev 119:1815–1831

    Article  Google Scholar 

  • Jacobson MZ (2002) Atmospheric Pollution: history, science and regulation. Cambridge University Press, Cambridge, 375 pp

  • James PA, Stohl A, Foster C, Eckhardt S, Seibert P, Frank A (2003) A 15-year climatology of stratosphere-troposphere exchange with a Lagrangian particle dispersion model: 2, mean climate and seasonal variability. J Geophys Res 108(D12), 8522. doi:10.1029/2002JD002639

    Article  Google Scholar 

  • Manzato A (2003) A climatology of instability indices derived from Friuli Venezia Giulia soundings, using three different methods. Atmos Res 67–68:417–454

    Article  Google Scholar 

  • Meloen J et al (2003) Stratosphere-troposphere exchange: a model and method intercomparison. J Geophys Res 108(D12), 8526. doi:10.1029/2002JD002274

    Article  Google Scholar 

  • Reed RJ (1995) A study of a characteristic type of upper-level frontogenesis. J Meteorol 12:226–237

    Google Scholar 

  • Roelofs GJ, Lelieveld J (1997) Model study of influence of cross-tropopause O3 transport on tropospheric O3 levels. Tellus 49B:38–55

    Google Scholar 

  • Roelofs GJ et al (2003) Intercomparison of tropospheric ozone models: ozone transport in a complex tropopause folding event. J Geophys Res 108(D12), 8529. doi:10.1029/2003JD003462

    Article  Google Scholar 

  • Scebba F, Canaccini F, Castagna A, Bender J, Weigel H-J, Ranieri A (2006) Physiological and biochemical stress responses in grassland species are influenced by both early-season ozone exposure and interspecific competition. Environ Poll 142:540–548

    Article  Google Scholar 

  • Scheel HE, Sladkovic R, Kanter HJ (1999) Ozone variations at Zugspitze (292 m asl) during 1996–1997. Proceedings of EUROTRAC-2 Symposium 1998, WIT, Southampton, UK, pp 260–263

    Google Scholar 

  • Sprenger M, Wernli H (2003) A northern hemispheric climatology of cross: tropopause exchange for the ERA15 time period (1979–1993). J Geophys Res 108(D12), 8521

    Article  Google Scholar 

  • Staehelin J, Thudium J, Buheler R, Volz-Thomas A, Graber W (1994) Trends in surface ozone concentrations at Arosa (Switzerland). Atmos Environ 28:75–78

    Article  Google Scholar 

  • Stephenson DB (2000) Use of the “Odds Ratio” for diagnosing forecast skill. Weather Forecast 15:221–232

    Article  Google Scholar 

  • Stevenson DS et al (2006) Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J Geophys Res 111(D08), 301. doi:10.1029/2005JD006338

    Article  Google Scholar 

  • Stohl A, Wotawa G, Seibert P, Kromp-Kolb H (1995) Interpolation errors in wind field as a function of spatial and temporal resolution and their impact on different types of kinematic trajectories. J Appl Meteorol 34:2149–2165

    Article  Google Scholar 

  • Stohl A, Spichtinger-Rakowsky N, Bonasoni P, Feldmann H, Memmesheimer M, Scheel HE, Trickl T, Hubener S, Ringer W, Mandl M (2000) The influence of stratospheric intrusions on alpine ozone concentrations. Atmos Environ 34:1323–1354

    Article  Google Scholar 

  • Stohl A et al (2003) Stratosphere-troposphere exchange: a review, and what we have learned from STACCATO. J Geophys Res 108:8516. doi:10.1029/2002JD002490

    Google Scholar 

  • Sudo K, Masaaki Y, Akimoto H (2003) Future changes in stratosphere–troposphere exchange and their impacts on future tropospheric ozone simulations. Geophys Res Lett 30(24), 2256. doi:10.1029/2003GL018526

    Article  Google Scholar 

  • Thornes JE, Stephenson DB (2001) How to judge the quality and value of weather forecast products. Meteorol Appl 8:307–314

    Article  Google Scholar 

  • Tositti L, Hübener S, Kanter HJ, Ringer W, Sandrini S, Tobler L (2004) Intercomparison of sampling and measurement of 7Be in air at four high-altitude locations in Europe. Appl Radiat Isot 61(6):1497–1502

    Article  Google Scholar 

  • Tressol M, Ordonez C, Zbinden R, Brioude J, Thouret V, Mari C, Nedelec P, Cammas J-P, Smit H, Patz H-W, Volz-Thomas A (2008) Air pollution during the 2003 European heat wave as seen by MOZAIC airliners. Atmos Chem Phys 8:2133–2150

    Article  Google Scholar 

  • Vaughan G, Price JD (1989) Ozone transport into the troposphere in a cut-ff low event: ozone in the atmosphere. Deepak, Hampton, VA, USA, pp 415–146

    Google Scholar 

  • Wilks S (1995) Statistical methods in the atmospheric sciences: an introduction. Academic, San Diego, CA, 443 pp

  • Yenger JJ, Klonecky AA, Levy H, W. Moxim WJ, Carmichael GR (1999) An evaluation of chemistry’s role in the winter–spring ozone maximum found in the northern midlatitude free troposphere. J Geophys Res 104(D3):3655–3667

    Article  Google Scholar 

  • Zanis P, Schuenpach E, Gaeggler HW, Huebener S, Tobler L (1999) Factors controlling beryllium-7 at Jungfraujoch in Switzerland. Tellus 51(4):789–805

    Google Scholar 

Download references

Acknowledgements

This study was carried out within the SHARE project (funded by EV-K2-CNR) and was partly supported by the EU-Network of Excellence ACCENT (goce-ct-2003-505337). The authors would like to thank the Mt. Cimone technical staff (Mr. Pio Giambi and the “Magera team”) for their technical support, as well as the Italian Air Force Meteorological Service and CAMM Mt. Cimone for their valuable collaboration. Finally, we are grateful to the two anonymous referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cristofanelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cristofanelli, P., Calzolari, F., Bonafè, U. et al. Stratospheric intrusion index (SI2) from baseline measurement data. Theor Appl Climatol 97, 317–325 (2009). https://doi.org/10.1007/s00704-008-0073-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-008-0073-x

Keywords

Navigation