Skip to main content

Advertisement

Log in

The impacts of Arctic oscillation and the North Sea Caspian pattern on the temperature and precipitation regime in Turkey

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

Arctic oscillation (AO) and the North Sea Caspian pattern (NCP) are atmospheric teleconnections that affect climate parameters such as precipitation, temperature and stream flow. The purpose of this study is to identify the relationship of the AO and NCP with Turkey’s mean temperature and precipitation totals. First, Pearson correlation coefficients between the AO and NCP and climate data were calculated and the results were assessed using Student’s t test. Although the results vary from region to region, highly negative correlation coefficients were observed between either the NCP or AO and the temperature, especially in the winter. Furthermore, the NCP and AO have a remarkably strong relationship with winter precipitation. Second, the NCP index (NCPI) and AO index were divided into negative and positive phases; then, the impacts of both phases on the climatic data were determined as annual and seasonal. Accordingly, the annual and seasonal mean temperature values under the effect of NCP (−) and AO (−) are higher than the annual and seasonal temperature values under the effect of NCP (+) and AO (+). In this context, the temperature differences are significant, especially in winter. The precipitation amount, under the effect of positive and negative phases of global indices, was also investigated in this study. Thus, substantial results were obtained, particularly for winter precipitation in Turkey’s western regions. Finally, scatter diagrams were also prepared to examine the relationship between negative and positive phases of the AO or NCP and the temperature or precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bayazıt M, Yeğen Oğuz EB (2005) Mühendisler için istatistik. Birsen Yayınevi, İstanbul

    Google Scholar 

  • Brunetti M, Kutiel H (2011) The relevance of the North-Sea Caspian Pattern (NCP) in explaining temperature variability in Europe and the Mediterranean. Nat Hazards Earth Syst Sci 11:2881–2888

    Article  Google Scholar 

  • Burt T, Howden N (2013) North Atlantic Oscillation amplifies orographic precipitation and river flow in upland Britain. Water Resour Res 49(6):3504–3515

    Article  Google Scholar 

  • Cohen J, Foster J, Barlow M, Saito K, Jones J (2010) Winter 2009–2010: a case study of an extreme Arctic oscillation event. Geopys Res Lett 37(17):1–6

    Article  Google Scholar 

  • del Río S, Iqbal MA, Cano-Ortiz A, Herrero L, Hassan A, Penas A (2013) Recent mean temperature trends in Pakistan and links with teleconnection patterns. Int J Climatol 33(2):277–290

    Article  Google Scholar 

  • Fendeková M, Pekárová P, Fendek M, Pekár J, Škoda P (2014) Global drivers effect in multi-annual variability of runoff. J Hydrol Hydromech 62(3):169–176

    Article  Google Scholar 

  • Ghanghermeh A, Roshan G, Al-Yahyai S (2015) The influence of Atlantic-Eurasian teleconnection patterns on temperature regimes in South Caspian Sea coastal areas: a study of Golestan Province, North Iran. Pollution 1(1):67–83

    Google Scholar 

  • Ghasemi AR, Khalili D (2008) The effect of the North Sea-Caspian pattern (NCP) on winter temperatures in Iran. Theor Appl Climatol 92(1–2):59–74

    Article  Google Scholar 

  • Givati A, Rosenfeld D (2013) The Arctic oscillation, climate change and the effects on precipitation in Israel. Atmos Res 132:114–124

    Article  Google Scholar 

  • Iqbal MA, Penas A, Cano-Ortiz A, Kersebaum K, Herrero L, del Río S (2016) Analysis of recent changes in maximum and minimum temperatures in Pakistan. Atmos Res 168:234–249

    Article  Google Scholar 

  • Kahya E, Karabörk MÇ (2001) The analysis of El Nino and La Nina signals in streamflows of Turkey. Int J Climatol 21(10):1231–1250

    Article  Google Scholar 

  • Karabörk MÇ, Kahya E, Karaca M (2005) The influences of the Southern and North Atlantic Oscillations on climatic surface variables in Turkey. Hydrol Process 19(6):1185–1211

    Article  Google Scholar 

  • Kutiel H, Benaroch Y (2002) North Sea-Caspian Pattern (NCP)–an upper level atmospheric teleconnection affecting the Eastern Mediterranean: identification and definition. Theor Appl Climatol 71(1):17–28

    Article  Google Scholar 

  • Kutiel H, Türkeş M (2005) New evidence for the role of the North Sea—Caspian Pattern on the temperature and precipitation regimes in continental central Turkey. Geografiska Annaler Ser A, Phys Geog 87(4):501–513

    Article  Google Scholar 

  • Kutiel H, Maheras P, Türkeş M, Paz S (2002) North Sea-Caspian Pattern (NCP)–an upper level atmospheric teleconnection affecting the eastern Mediterranean–implications on the regional climate. Theor Appl Climatol 72(3–4):173–192

    Article  Google Scholar 

  • López-Moreno JI, Vicente-Serrano SM, Morán-Tejeda E, Lorenzo-Lacruz J, Kenawy A, Beniston M (2011) Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: observed relationships and projections for the 21st century. Glob Plan Change 77(1):62–76

    Article  Google Scholar 

  • Nastos P, Philandras C, Founda D, Zerefos C (2011) Air temperature trends related to changes in atmospheric circulation in the wider area of Greece. Int J Remote Sens 32(3):737–750

    Article  Google Scholar 

  • Philandras C, Nastos P, Kapsomenakis I, Repapis C (2015) Climatology of upper air temperature in the Eastern Mediterranean region. Atmos Res 152:29–42

    Article  Google Scholar 

  • Rodwell MJ, Rowell DP, Folland CK (1999) Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature. 398:320–323

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Trigo RM, Osborn TJ, Corte-Real J (2002) The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms. Clim Res 20:9–17

    Article  Google Scholar 

  • Türkeş M, Erlat E (2003) Precipitation Changes and Variability in Turkey Linked to the North Athlantic Oscillation during period 1930–2000. Int J Climatol 23:1771–1796

    Article  Google Scholar 

  • Türkeş M, Erlat E (2008) Influence of the Arctic oscillation on the variability of winter mean temperatures in Turkey. Theor Appl Climatol 92(1):75–85

    Article  Google Scholar 

  • Türkeş M, Erlat E (2009) Winter mean temperature variability in Turkey associated with the North Atlantic Oscillation. Meteorol Atmos Phys 105(3–4):211–225

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI, El Kenawy AM, Angulo M (2009) Daily atmospheric circulation events and extreme precipitation risk in Northeast Spain: the role of the North Atlantic Oscillation, Western Mediterranean Oscillation and Mediterranean Oscillation. J Geophys Res 114:1–19

    Article  Google Scholar 

  • Ward PJ, Kummu M, Lall U (2016) Flood frequencies and durations and their response to El Niño Southern Oscillation: global analysis. J Hydrol 539:358–378

    Article  Google Scholar 

  • Yeo SR, Kim W, Kim KY (2017) Eurasian snow cover variability in relation to warming trend and Arctic oscillation. Clim Dyn 48(1–2):499–511

    Article  Google Scholar 

  • Zuo J, Ren HL, Li W (2015) Contrasting impacts of the Arctic oscillation on surface air temperature anomalies in southern China between early and middle-to-late winter. J Clim 28(10):4015–4026

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Turkish State Meteorological Service for providing the temperature and precipitation data. Furthermore, we also would like to thank anonymous reviewer for sharing the NCP data which cover the period of 1960–2015 and improving the quality of this research paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turgay Partal.

Additional information

Responsible Editor: S. Trini Castelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sezen, C., Partal, T. The impacts of Arctic oscillation and the North Sea Caspian pattern on the temperature and precipitation regime in Turkey. Meteorol Atmos Phys 131, 1677–1696 (2019). https://doi.org/10.1007/s00703-019-00665-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-019-00665-w

Navigation