Skip to main content
Log in

Characterizing atmospheric surface layer turbulence using chaotic return map analysis

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

Nonlinear time series analysis methods are used to investigate the dynamics of mechanical and convective turbulences in the atmospheric surface layer flow. Using dynamical invariant analysis (e.g. correlation dimension, Lyapunov exponent and mutual information) along with recurrence quantification analysis (e.g. recurrent rate, determinism, average diagonal length of recurrence plot, etc.) of the vertical wind component data, it is confirmed that a convective turbulence is a lower order manifold in its phase space exhibiting higher degree of organization than a mechanical turbulence. Applying a quasi-one-dimensional chaotic return map technique, the topological differences between the mechanical and convective turbulences are explored. These quasi-one-dimensional return maps are produced using the local maxima of the first principal component of the reconstructed turbulence data. A comparison of the probability distribution of the local maxima of a forced Lorenz model with the turbulence data indicates the possible existence of a stable fixed point for both type of turbulences. Furthermore, dynamically the mechanical turbulence is found to resemble an unforced Lorenz model whereas the convective turbulence resembles a forced Lorenz model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Campanharo A, Ramos F, Macau E, Rosa R, Bolzan M, Sa L (2008) Searching chaos and coherent structures in the atmospheric turbulence above the Amazon forest. Philos Trans R Soc A 366:579–589. doi:10.1098/rsta.2007.2118

    Article  Google Scholar 

  • Charney J, De Vore J (1979) Multiple flow equilibria in the atmosphere and blocking. J Atmos Sci 36:1205–1216

    Article  Google Scholar 

  • Chaudhuri S (2006) Predictability of chaos inherent in the occurrence of severe thunderstorms. Adv Complex Syst 9:77–85. doi:10.1142/S0219525906000689

    Article  Google Scholar 

  • Chian A, Miranda R, Koga D, Bolzan M, Ramos F, Rempel E (2008) Analysis of phase coherence in fully developed atmospheric turbulence: Amazon forest canopy. Nonlinear Process Geophys 15:567–573

    Article  Google Scholar 

  • Dwivedi S, Mittal A, Goswami B (2006) An empirical rule for extended range prediction of duration of indian summer monsoon breaks. Geophys Res Lett 33:L18801–L18805

    Google Scholar 

  • Eckmann JP, Kamphorst SO, Ruelle D (1987) Recurrence plots of dynamical systems. Europhys Lett 5:973–977

    Article  Google Scholar 

  • Foken T, Nappo C (2008) Micrometeorology. Springer, Berlin

  • Fraser A, Swinney H (1986) Independent coordinates for strange attractors from mutual information. Phys Rev A 33:1134–1140

    Article  Google Scholar 

  • Gallego M, Garcia J, Cancillo M (2001) Characterization of atmospheric turbulence by dynamical systems techniques. Bound Layer Meteorol 100:375–392. doi:10.1023/A:1019236532730

    Article  Google Scholar 

  • Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50:346–349

    Article  Google Scholar 

  • Hsieh W (2004) Nonlinear multivariate and time series analysis by neural network methods. Rev Geophys 42:RG1003

    Google Scholar 

  • Itoh H, Kimoto M (1999) Weather regimes, low frequency oscillations, and principal patterns of variability. J Atmos Sci 56:2684–2705

    Article  Google Scholar 

  • Kantz H, Schreiber T (1997) Nonlinear time series analysis. Cambridge University Press, Cambridge

  • Kennel M, Brown R, Abarbanel H (1992) Determining embedding dimension for phase-space reconstruction using a geometric construction. Phys Rev A 45:3403–3411

    Article  Google Scholar 

  • Lagras B, Ghill M (1985) Persistent anomalies, blocking and variations in the atmospheric predictability. J Atmos Sci 42:433–471

    Article  Google Scholar 

  • Laubach J (2010) Testing of a lagrangian model of dispersion in the surface layer with cattle methane emissions. Agric For Meteorol 150(11):1428–1442. doi:10.1016/j.agrformet.2010.07.006

    Article  Google Scholar 

  • Lorenz E (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  • Marwan N, Trauth MH, Vuille M, Kurths J (2003) Comparing modern and Pleistocene ENSO-like influences in NW Argentina using nonlinear time series analysis methods. Climate Dyn 21:317–326. doi:10.1007/s00382-003-0335-3

    Article  Google Scholar 

  • Marwan N, Carmen Romano M, Thiel M, Kurths J (2007) Recurrence plots for the analysis of complex systems. Phys Rep 438(5):237–329. doi:10.1016/j.physrep.2006.11.001

    Article  Google Scholar 

  • McMillen R (1988) An eddy correlation technique with extended applicability to non-simple terrain. Bound Layer Meteorol 43(3):231–245. doi:10.1007/BF00128405

    Article  Google Scholar 

  • Mehta M, Mittal A, Dwivedi S (2003) The double-cusp map for the forced lorenz system. Int J Bifurc Chaos 13:3029–3035

    Article  Google Scholar 

  • Mittal A, Dwivedi S, Pandey A (2005) Bifurcation analysis of a paradigmatic model of monsoon prediction. Nonlinear Process Geophys 12:707–715. doi:10.5194/npg-12-707-2005

    Article  Google Scholar 

  • Mittal A, Dwivedi S, Yadav R (2007) Probability distribution for the number of cycles between successive regime transitions for the lorenz model. Physica D 233:14–20. doi:10.1016/j.physd.2007.06.014

    Article  Google Scholar 

  • Mittal A, Mukherjee S, Shukla R (2011) Bifurcation analysis of some forced Lu systems. Commun Nonlinear Sci Numer Simul 16:787–797. doi:10.1016/j.cnsns.2010.04.016

    Article  Google Scholar 

  • Monin A, Obukhov A (1954) Osnovnye zakonomernosti turbulentnogo peremesivanija v prizemnom sloe atmosphery (Basic laws of turbulent mixing in the atmosphere near the ground). Trudy geofiz inst AN SSSR 24:163–187

    Google Scholar 

  • Mukherjee S, Shukla R, Mittal A, Pandey A (2011) Mathematical analysis of a chaotic model in relevance to monsoon ISO. Meteorol Atmos Phys 114:83–93. doi:10.1007/s00703-011-0159-3

    Article  Google Scholar 

  • Packard NH, Crutchfield JP, Farmer JD, Shaw RS (1980) Geometry from a time series. Phys Rev Lett 45(9):712–716

    Article  Google Scholar 

  • Palmer T (1994) Chaos and predictability in forecasting the monsoon. Proc Indian Nat Sci Acad 60A:57–66

    Google Scholar 

  • Panofsky H, Tennekes H, Lenschow D, Wyngaard J (1977) The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound Layer Meteorol 11:355–361

    Article  Google Scholar 

  • Parlitz U (1998) Nonlinear time-series analysis in nonlinear modeling: advance black-box techniques. Kluwer Academic Publishers, Boston

  • Poveda-Jaramillo G, Puente C (1993) Strange attractors in atmospheric boundary layer turbulence. Bound Layer Meteorol 64:175–197. doi:10.1007/BF00705667

    Article  Google Scholar 

  • Shukla R, Mukherjee S, Mittal A (2010) Comparison of generalized competitive modes and return maps for characterizing different types of chaotic attractors in Chen system. Int J Bifurc Chaos 20(3):735–748. doi:10.1142/S0218127410026022

    Article  Google Scholar 

  • Sivakumar B (2000) Chaos theory in hydrology: important issues and interpretations. J Hydrol 227:1–20. doi:10.1016/S0022-1694(99)00186-9

    Article  Google Scholar 

  • Takens F (1981) Detecting strange attractors in turbulence. Lecture notes in mathematics. Springer, Germany

  • Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer J (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58:77

  • Tsonis A, Elsner J (1988) The weather attractor over very short timescales. Nature 333:545–547

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14(3):512–526. doi:10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2

    Article  Google Scholar 

  • Wesson K, Katul G, Siqueira M (2003) Quantifying organization of atmospheric turbulent eddy motion using nonlinear time series analysis. Bound Layer Meteorol 106:507–525. doi:10.1023/A:1021226722588

    Article  Google Scholar 

  • Wolf A, Swift J, Vastano J (1995) Determining Lyapunov exponent from a time series. Physica D 16:285–317

    Article  Google Scholar 

  • Xin L, Fei H, Gang L (2001) Characteristics of chaotic attractors in atmospheric boundary-layer turbulence. Bound Layer Meteorol 99:335–345. doi:10.1023/A:1018940512240

    Article  Google Scholar 

  • Yadav R, Dwivedi S, Mittal A (2005) Prediction rules for regime changes and length in a new regime for the Lorenz model. J of Atmos Sci 62:2316–2321. doi:10.1175/JAS3469.1

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by the Ministry of Agriculture and Forestry, Govt. of New Zealand, and National Institute of Water and Atmospheric Research Ltd. (NIWA). Thanks to Justin Harrison and Nicholas Key of Department of Geography, University of Canterbury for providing the technical support and instrumentation. Thanks to Dr. Norbert Marwan, Potsdam University, Germany for providing us the CRPToolbox.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandipan Mukherjee.

Additional information

Responsible editor: S. Trini Castelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, S., Zawar-Reza, P., Sturman, A. et al. Characterizing atmospheric surface layer turbulence using chaotic return map analysis. Meteorol Atmos Phys 122, 185–197 (2013). https://doi.org/10.1007/s00703-013-0286-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-013-0286-0

Keywords

Navigation