Skip to main content

Advertisement

Log in

Ground-based measurements of local cloud cover

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

Clouds are believed to reflect temporal climate changes through variations in their amounts, characteristics, and occurrence. In addition, they reflect both weather and climate in a region. In this work, a methodology to determine the local cloud cover (LCC) is proposed using sky images obtained from a ground-based instrument. Three years of sky images from an urban, tropical site were obtained and analyzed through that methodology. Monthly average LCC varied from 3 to 96 %, while seasonal average values were 68 % for summer, 54 % for spring, 46 % for fall, and 23 % for winter. LCC results show a clear seasonal dependence and a fair agreement (r 2 = 0.72) with satellite data, which typically underestimate the cloud cover in relation to LCC. Our analysis also suggests the possibility of a measurable link between LCC and natural events like the El Niño Southern Oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berendes TA, Berendes DA, Welch RM, Dutton EG, Uttal T, Clothiaux EE (2004) Cloud cover comparison of the MODIS daytime cloud mask with surface instruments at the north slope of Alaska ARM site. IEEE Trans Geosci Remote Sens 42:2584–2593

    Article  Google Scholar 

  • Boening, C, Willis JK, Landerer FW, Nerem RS, Fasullo J (2012) The 2011 La Niña: so strong, the oceans fell. Geophys Res Lett 39. doi:10.1029/2012GL053055

  • Calbó J, Sabburg J (2008) Feature extraction from whole-sky ground-based images for cloud-type recognition. J Atmos Oceanic Technol 25:3–14. doi:10.1175/2007JTECHA959.1

    Article  Google Scholar 

  • Carslaw KS, Harrison RG, Kikby J (2002) Cosmic rays, clouds, and climate. Science 298:1732–1736

    Article  Google Scholar 

  • Cazorla A, Olmo FJ, Alados-Arboledas L (2008) Development of a sky imager for cloud cover assessment. J Opt Soc Am A 25:29–39

    Article  Google Scholar 

  • Chiu JC, Marshak A, Knyazikhin Y, Pilewski P, Wiscombe WJ (2009) Physical interpretation of the spectral radiative signature in the transition zone between cloud-free and cloudy regions. Atmos Chem Phys 9:1419–1430

    Article  Google Scholar 

  • Gadhavi H, Pinker RT, Laszlo I (2008) Estimates of surface ultraviolet radiation over North America using Geostationary Operational Environmental Satellites observations. J Geophys Res 113:D21205. doi:10.1029/2007JD9308

    Article  Google Scholar 

  • Heinle A, Macke A, Srivastav A (2010) Automatic cloud classification of whole sky images. Atmos Meas Techol 3:557–567

    Article  Google Scholar 

  • Hobbs PV (1993) Aerosol-cloud-climate interactions. In: International geophysical series 54, Academic Press, San Diego

  • Holle RL, MacKay SA (1975) Tropical cloudiness from all-sky cameras on Barbados and adjacent Atlantic Ocean. J Appl Meteorol 14:1437–1450

    Article  Google Scholar 

  • Houze RA Jr (1993) Cloud Dynamics. Academic Press, San Diego

    Google Scholar 

  • Jeong M-J, Li Z (2010) Separating real and apparent effects of cloud, humidity, and dynamics on aerosol optical thickness near cloud edges. J Geophys Res 115:D00K32. doi:10.1029/2009JD013547

    Article  Google Scholar 

  • Jones TA, Christopher SA (2008) Seasonal variation in satellite-derived effects of aerosols on clouds on the Arabian Sea. J Geophys Res 113:D09207. doi:10.1029/2007JD009118

    Article  Google Scholar 

  • Kassianov E, Long CN, Ovtchinnikov M (2005) Cloud sky cover versus cloud fraction: whole-sky simulations and observations. J Appl Meteorol 44:86–98

    Article  Google Scholar 

  • Kazantzidis A, Tzoumanikas P, Bais AF, Fotopoulos S, Economou G (2012) Cloud detection and classification with the use of whole-sky ground-based images. Atmos Res 113:80–88. doi:10.1016/j.atmosres.2012.05.005

    Article  Google Scholar 

  • Kiehl JT (1994) Clouds and their effects on the climate system. Phys Today 11:36–42

    Article  Google Scholar 

  • Koren I, Remer LA, Kaufman YJ, Rudich Y, Martins JV (2007) On the twilight zone between clouds and aerosols. Geo Res Lett 34:L08805. doi:10.1029/2007GL029253

    Article  Google Scholar 

  • Kreuter A, Zangerl M, Schwarzmann M, Blumthaler M (2009) All-sky imaging: a simple, versatile system for atmospheric research. Appl Opt 48:1091–1097

    Article  Google Scholar 

  • Kroon M, Dobber MR, Dirksen R, Veefkind JP, van den Oord GHJ, Levelt PF (2008) Ozone Monitoring Instrument geolocation verification. J Geophys Res 113:D15S12. doi:10.1029/2007JD008821

    Article  Google Scholar 

  • Levelt PF, van den Oord GHJ, Dobber MR, Mälkki A, Visser H, de Vries J, Stammes P, Lundell JOV, Saari H (2006) The Ozone Monitoring Instrument. IEEE Trans Geosci Remote Sens 44:1093–1101

    Article  Google Scholar 

  • Li DHW, Tang HL (2008) Standard skies classification in Hong Kong. J Atmos S-Terres Phys 70:1222–1230

    Article  Google Scholar 

  • Loeb NG, Schuster GL (2008) An observational study of the relationship between cloud, aerosol and meteorology in broken low-level cloud conditions. J Geophys Res 113:D14214. doi:10.1029/2007JD009763

    Article  Google Scholar 

  • Long CN (2010) Correcting for circumsolar and near-horizon errors in sky cover retrievals from sky images. Open Atmos Sci J 4:45–52

    Article  Google Scholar 

  • Long CN, Sabburg JM, Calbó J, Pagès D (2006) Retrieving cloud characteristics from ground-based daytime color all-sky images. J Atmos Ocean Technol 23:633–652

    Article  Google Scholar 

  • Mantelli Neto SL, Wangenheim AV, Pereira EB, Comunello E (2010) The use of Euclidean geometric distance on RGB color space for classification of sky and cloud patterns. J Atmos Ocean Technol 27:1504–1517

    Article  Google Scholar 

  • Martins FR, Souza MP, Pereira EB (2003) Comparative study of satellite and ground techniques for cloud cover determination. Adv Space Res 32:2275–2280

    Article  Google Scholar 

  • Mason BJ (1972) The Physics of Clouds. Clarendon Press, Oxford

    Google Scholar 

  • McKenzie RL, Aucamp PJ, Bais AF, Björn LO, Llyas M, Madronich S (2011) Ozone depletion and climate change: impacts on UV radiation. Photochem Photobiol Sci 10:182–198. doi:10.1039/C0PP90034F

    Article  Google Scholar 

  • Neelin JD, Latif M (1998) El Niño dynamics. Phys Today 51:32–36

    Article  Google Scholar 

  • Pfister G, McKenzie RL, Liley JB, Thomas A, Forgan BW, Long CN (2003) Cloud coverage based on all-sky imaging and its impact on the surface solar irradiance. J Appl Meteorol 42:1421–1434

    Article  Google Scholar 

  • Sabburg JM, Long CN (2004) Improved sky imager for studies of enhanced UV irradiance. Atmos Chem Phys 4:2543–2552

    Article  Google Scholar 

  • Salby ML (1996) Fundamentals of atmospheric physics. In: International geophysical series 61. Academic Press, San Diego

  • Schoeberl MR, Douglas AR, Hilsenrath E, Bhartia PK, Barnett J, Gille J, Beer R, Gunson M, Waters J, Levelt PF, Decola P (2004) Earth observing system missions benefit atmospheric research. EOS 85:177–184

    Article  Google Scholar 

  • Silva AA (2009) Daily distribution of UV-Index in Belo Horizonte (Brazil) and the shadow rule. Revista Brasileira de Geofísica 27:313–322

    Article  Google Scholar 

  • Silva AA (2011) Local cloud cover, ground-based and satellite measurements of erythemal dose rate for an urban, tropical site in Southern Hemisphere. J Atmos S-Terres Phys 73:2474–2481. doi:10.1016/j.jastp.2011.09.002

    Article  Google Scholar 

  • Singh AK, Siingh D, Singh RP (2011) Impact of galactic cosmic rays on Earth′s atmosphere and human health. Atmos Environ 45:3806–3818

    Article  Google Scholar 

  • Souza-Echer MP, Pereira EB, Bins LS, Andrade MAR (2006) Simple method for the assessment of the cloud cover state in high latitude regions by a ground based digital camera. J Atmos Ocean Technol 23:437–447

    Article  Google Scholar 

  • Souza-Echer MP, Echer E, Nordemann DJR, Rigozo NR, Prestes A (2008) Wavelet analysis of a centennial (1895–1994) southern Brazil rainfall series. Clim Chang 87:489–497

    Article  Google Scholar 

  • Stammes P, Sneep M, de Haan JF, Veefkind JP, Wang P, Levelt PF (2008) Effective cloud fractions from the Ozone Monitoring Instrument: Theoretical framework and validation. J Geophys Res 113:D16S38. doi:10.1029/2007JD008820

    Article  Google Scholar 

  • Tanskanen A et al (2007) Validation of daily erythemal doses from Ozone Monitoring Instrument with ground-based UV measurement data. J Geophys Res 112:D24S44. doi:10.1029/2007JD008830

    Article  Google Scholar 

  • Wang Q, Liang J, Hu Z-J, Hu H-H, Zhao H, Hu H-Q, Gao X, Yang H (2010) Spatial texture based automatic classification of dayside aurora in all-sky images. J Atmos S-Terres Phys 72:498–508. doi:10.1016/j.jastp.2010.01.011

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grants 471159/2004-2, 300162/2012-0, and other grants), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, CRA APQ 0848-5.02/07), and logistic supported by PUC Minas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Antônio Silva.

Additional information

Responsible editor: C. Simmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, A.A., de Souza Echer, M.P. Ground-based measurements of local cloud cover. Meteorol Atmos Phys 120, 201–212 (2013). https://doi.org/10.1007/s00703-013-0245-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-013-0245-9

Keywords

Navigation