Skip to main content
Log in

Spin-up behavior of soil moisture content over East Asia in a land surface model

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

This study presents an investigation of the spin-up behavior of soil moisture content (SMC) and evapotranspiration (ET) in an offline Noah land surface model (LSM) for East Asia, focusing on its interplay with the Asian monsoon. The set of 5-year recursive runs is conducted to properly assess the spin-up behavior of land surface processes and consists of simulations initialized with (1) a spatially uniform soil moisture, (2) NCEP GDAS soil moisture data, and (3) ECMWF ERA-Interim soil moisture data. Each run starts either after or before the summer monsoon. Initial SMCs from GDAS and ERA-Interim data significantly deviate from the equilibrium state (spin-up state) with the given input forcing even though the same equilibrium is reached within 3-year spin-up time, indicating that spin-up of land surface process is necessary. SMC reaches the equilibrium much quickly when (1) the consistent LSMs have been used in the prediction and analysis systems and (2) the spin-up simulation starts before the onset of heavy rainfall events during summer monsoon. For an area with heavy monsoon rainfall, the total column SMC and ET spin up quickly. The spin-up time over dry land is about 2–3 years, but for monsoon rainfall area decreases dramatically to about 3 months if the spin-up run starts just before the onset of monsoon. Further scrutiny shows that the spin-up time is well correlated with evaporative fraction given by the ratio between the latent heat flux and the available energy at the land surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Case JL, Crosson WL, Kumar SV, Lapenta WM, Peters-Lidard CD (2008) Impacts of high-resolution land surface initialization on regional sensible weather forecasts from the WRF model. J Hydrometeorol 9:1249–1266

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Wea Rev 129:569–585

    Article  Google Scholar 

  • Chen F, Mitchell K (1999) Using the GEWEX/ISLSCP forcing data to simulate global soil moisture fields and hydrological cycle for 1987–1988. J Meteorol Soc Japan 77:167–182

    Google Scholar 

  • Cosgrove BA, Lohmann D, Mitchell KE et al. (2003) Land surface model spin-up behavior in the North American Land Data Assimilation System (NLDAS). J Geophys Res 108(D22):8845. doi:10.1029/2002JD003316

    Google Scholar 

  • de Goncalves LGG, Shuttleworth WJ, Burke EJ, Houser PR, Toll DL, Rodell M, Arsenault K (2006) Toward a South America Land Data Assimilation System: aspects of land surface model spin-up using the simplified simple biosphere. J Geophys Res 111:D17110. doi:10.1029/2005JD006297

    Article  Google Scholar 

  • Dirmeyer PA, Gao X, Zhao M, Guo Z, Oki T, Hanasaki N (2006) GSWP-2: multimodel analysis and implications for our perception of the land surface. Bull Am Meteorol Soc 87:1381–1397

    Article  Google Scholar 

  • Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Ganyo G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 108(D22):8851. doi:10.1029/2002JD003296

    Google Scholar 

  • Falloon P, Jones CD, Ades M, Paul K (2011) Direct soil moisture controls of future global soil carbon changes: an important source of uncertainty. Glob Biogeochem Cycles 25:GB3010. doi:10.1029/2010GB003938

  • Fennessy MJ, Shukla J (1999) Impact of initial soil wetness on seasonal atmospheric prediction. J Clim 12:3167–3180

    Article  Google Scholar 

  • Henderson-Sellers A, Yang Z-L, Dickinson RE (1993) The project for intercomparison of land-surface parameterization scheme. Bull Am Meteorol Soc 74:1335–1349

    Article  Google Scholar 

  • Holt TR, Niyogi D, Chen F, Manning K, LeMone MA, Qureshi A (2006) Effect of land–atmosphere interactions on the IHOP 24–25 May 2002 convection case. Mon Wea Rev 134:113–133

    Article  Google Scholar 

  • Hong J, Kim J (2010) Numerical study of surface energy partitioning on the Tibetan plateau: comparative analysis of two biosphere models. Biogeosciences 7:557–568

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kanae S, Hirabayashi Y, Yamada T, Oki T (2006) Influence of “realistic” land surface wetness on predictability of seasonal precipitation in boreal summer. J Clim 19:1450–1460

    Article  Google Scholar 

  • Kim J-E, Hong S-Y (2007) Impact of soil moisture anomalies on summer rainfall over East Asia: a regional climate model study. J Clim 20:5732–5743

    Article  Google Scholar 

  • Kim J, Miller NL, Oh J-H, Chung J-S, Rah D-K (1998) Eastern Asian hydrometeorology simulation using the Regional Clim System Model. Glob Planet Change 19:225–240

    Article  Google Scholar 

  • Koster RD, Milly PCD (1997) The interplay between transpiration and runoff formulations in land surface schemes used with atmospheric models. J Clim 10:1578–1591

    Article  Google Scholar 

  • Koster RD, Suarez MJ (2003) Impact of land surface initialization on seasonal precipitation and temperature prediction. J Hydrometeorol 4:408–423

    Article  Google Scholar 

  • Koster RD, Guo Z, Yang R, Dirmeyer PA, Mitchell KE, Puma MJ (2009) On the nature of soil moisture in land surface models. J Climate 22:4322–4335

    Article  Google Scholar 

  • Koster RD, Mahanama SPP, Yamada TJ et al (2010) Contribution of land surface initialization to subseasonal forest skill: first results from a multi-model experiment. Geophys Res Lett 37:L02402. doi:10.1029/2009GL041677

    Article  Google Scholar 

  • Laprise R (2008) Regional climate modeling. J Comput Phys 227:3641–3666

    Article  Google Scholar 

  • Lim Y-J, Byun K-Y, Lee T-Y, Kwon H, Hong J, Kim J (2012) A land data assimilation system using MODIS-derived land data and its application to numerical weather prediction in East Asia. Asia-Pacific J Atmos Sci 48:83–95

    Article  Google Scholar 

  • Mitchell KE, Lohmann D, Houser PR et al. (2004) The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J Geophys Res 109, D07S90. doi:10.1029/2003JD003823

  • Onogi K, Tsutsui J, Koide H et al (2007) The JRA-25 reanalysis. J Meteorol Soc Japan 85:369–432

    Article  Google Scholar 

  • Reichle RH, Koster RD, Dong J, Berg AA (2004) Global soil moisture from satellite observations, land surface models, and ground data: implications for data assimilation. J Hydrometeorol 5:430–442

    Article  Google Scholar 

  • Robock A, Vinnikov KY, Srinivasan G et al (2000) The global soil moisture data bank. Bull Am Meteorol Soc 81:1281–1299

    Article  Google Scholar 

  • Rodell M, Houser PR, Jambor U et al (2004) The global land data assimilation system. Bull Am Meteorol Soc 85:381–394

    Article  Google Scholar 

  • Rodell M, Houser PR, Berg AA, Famiglietti JS (2005) Evaluation of 10 methods for initializing a land surface model. J Hydrometeorol 6:146–155

    Article  Google Scholar 

  • Schär C, Lüthi D, Beyerle U, Heise E (1999) The soil–precipitation feedback: a process study with a regional climate model. J Clim 12:722–741

    Article  Google Scholar 

  • Shrestha R, Houser P (2010) A heterogeneous land surface model initialization study. J Geophys Res 115:D19111. doi:10.1029/2009JD013252

    Article  Google Scholar 

  • Simmons AJ, Gibson JK (2000) The ERA-40 Project Plan. ERA-40 Project Report Series No. 1, Eur Cent for Medium-Range Weather Forecasts, Reading, UK

  • Van den Hurk BJJM, Viterbo P, Beljaars ACM, Betts AK (2000) Offline validation of the ERA-40 surface scheme. ECMWF Tech Memo 295, Eur Cent for Medium-Range Weather Forecasts, Reading, UK

  • Yang, Z-L, Dickinson RE, Henderson-Sellers A, Pitman AJ (1995) Preliminary study of spin-up processes in land surface models with the first stage data of project for intercomparison of land surface parameterization schemes phase 1(a). J Geophys Res 100(D8):16,553–16,578. doi:10.1029/95JD01076

  • Zhong Z, Hu YJ, Min JZ, Xu HL (2007) Numerical experiments on the spin-up time for seasonal-scale regional climate modeling. Acta Meteorol Sin 21:409–419

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Korea Meteorological Administration Research and Development Program under Grant RACS 2012-3034 and RACS 2012-3055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinkyu Hong.

Additional information

Responsible Editor: J.-F. Miao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, YJ., Hong, J. & Lee, TY. Spin-up behavior of soil moisture content over East Asia in a land surface model. Meteorol Atmos Phys 118, 151–161 (2012). https://doi.org/10.1007/s00703-012-0212-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-012-0212-x

Keywords

Navigation