Skip to main content
Log in

Weather type dependent quality assessment of a satellite-based rainfall detection scheme for the mid-latitudes

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

The sensitivity of a recently published satellite-based rainfall detection scheme with differing frontal weather regimes is investigated for 676 precipitation scenes between January and August 2004. For this purpose, the rain area classified by the recent Rain Area Delineation Scheme during Night time (RADS-N) was compared to the rain area detected by the radar network of the German Weather Service. The validation results indicate that the rain area detected by RADS-N is highly consistent with the radar network (mean POD: 0.62; mean FAR: 0.52; mean ETS: 0.22). However, the bias indicates a mean overestimation of 42%. The classification results show that the satellite technique performs better in cold frontal situations and thunderstorms. Therefore, further investigations are needed to address the overall performance as well as the dependency on different weather situations and in order to allow reliable rain area detection during night-time, independent of the prevailing weather situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adler RF, Negri AJ (1988) A satellite technique to estimate tropical convective and stratiform rainfall. J Appl Meteor 27:30–51

    Article  Google Scholar 

  • Arking A, Childs JD (1985) Retrieval of cloud cover parameters from multispectral satellite images. J Appl Meteor 24:322–333

    Article  Google Scholar 

  • Ba MB, Gruber A (2001) GOES multispectral rainfall algorithm (GMSRA). J Appl Meteor 40:1500–1514

    Article  Google Scholar 

  • Bellon A, Lovejoy S, Austin GL (1980) Combining satellite and radar data for the short-range forecasting of precipitation. Mon Wea Rev 108:1554–1556

    Article  Google Scholar 

  • Bendix J, Reudenbach C, Rollenbeck R (2003) The Marburg Satellite Station. In: Proceedings of EUMETSAT 2002 conference, pp 139–146

  • Berliner Wetterkarte V (ed) (2004) Berliner Wetterkarte, vol. 53, pp 1–168

  • Bissolli P, Dittmann E (2001) The objective weather type classification of the German Weather Service and its possibilities of application to environmental and meteorological investigations. Met Ztsch 10:253–260

    Article  Google Scholar 

  • Bissolli P, Dittmann E (2005) Objektive Wetterlagenklassen 2004. In: DWD (ed) Klimastatusbericht 2004, Offenbach, pp 122–128

  • Cermak J, Bendix J, Dobbermann M (2008) FMet—an integrated framework for Meteosat data processing for operational scientific applications. Comput Geosci 34:1638–1644

    Article  Google Scholar 

  • Cheng M, Brown R, Collier CG (1993) Delineation of precipitation areas by correlation of METEOSAT visible and infrared data in the region of the United Kingdom. J Appl Meteor 32:884–898

    Article  Google Scholar 

  • Chiaravalloti F, Gabriele S (2009) Vibo Valentia flood and MSG rainfall evaluation. Atmos Res 93:286–294

    Article  Google Scholar 

  • Deutscher Wetterdienst (2005), Weather radar network, report, Offenbach, Germany. Online available at: http://www.dwd.de/bvbw/generator/Sites/DWDWWW/Content/Oeffentlichkeit/TI/TI2/Downloads/Radarbrosch_C3_BCre,templateId=raw,property=publicationFile.pdf/Radarbrosch%C3%BCre.pdf

  • Ebert E, Janowiak J, Kidd C (2007) Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull Am Meteorol Soc 88:47–64

    Article  Google Scholar 

  • Feijt AJ, Jolivet D, Koelemeijer R, Deneke H (2004) Recent improvements to LWP retrievals from AVHRR. Atmos Res 72:3–15

    Article  Google Scholar 

  • Früh B, Bendix J, Nauss T, Paulat M, Pfeiffer A, Schipper JW, Thies B, Wernli H (2007) Verification of precipitation from regional climate simulations and remote-sensing observations with respect to ground-based observations in the upper Danube catchment. Meteorol Z 16:275–293

    Article  Google Scholar 

  • Greuell W, Roebeling RA (2009) Toward a standard procedure for validation of satellite-derived cloud liquid water path: A study with SEVIRI data. J Appl Meteorol Climatol 48:1575–1590

    Article  Google Scholar 

  • Han Q, Rossow WB, Lacis AA (1994) Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J Clim 7:465–497

    Article  Google Scholar 

  • Houze RA (1993) Cloud dynamics, Int Geophys Ser, vol 53. Academic, San Diego

    Google Scholar 

  • Jaeneke M (1995) Der Radarverbund des DWD als Hilfsmittel der regionalen und lokalen Gewitterprognose. Promet 24:55–72

    Google Scholar 

  • Jolliffe IT, Stephenson DB (ed) (2003) Forecast verification: a practitioner’s guide in atmospheric science. Wiley, London, 240 pp

  • Kawamoto K, Nakajima T, Nakajima TY (2001) A global determination of cloud microphysics with AVHRR remote sensing. J Clim 14:2054–2068

    Article  Google Scholar 

  • King MD, Tsay SC, Platnick SE, Wang M, Liou KN (1997) Cloud retrieval algorithms for MODIS: optical thickness, effective particle radius, and thermodynamic phase, NASA

  • Kokhanovsky AA, Nauss T (2005) Satellite-based retrieval of ice cloud properties using a semi-analytical algorithm. J Geophys Res Atmos 110/D19: D19206

  • Kokhanovsky AA, Rozanov VV, Zege PE, Bovensmann H, Burrows JP (2003) A semianalytical cloud retrieval algorithm using backscattered radiation in 0.4–2.4 Am spectral region. J Geophys Res 108:4-1–4-19

    Google Scholar 

  • Kurino T (1997) A satellite infrared technique for estimating ‘deep/shallow’ precipitation. Adv Space Res 19:511–514

    Article  Google Scholar 

  • Lang P (1997) Niederschlagsquantifizierung auf der Basis von Radardaten. Promet 26:22–31

    Google Scholar 

  • Lensky IM, Rosenfeld D (2003a) A night-rain delineation algorithm for infrared satellite data based on microphysical considerations. J Appl Meteorol 42:1218–1226

    Article  Google Scholar 

  • Lensky IM, Rosenfeld D (2003b) Satellite-based insights into precipitation formation processes in continental and maritime convective clouds at nighttime. J Appl Meteorol 42:1227–1233

    Article  Google Scholar 

  • Levizzani V (2003) Satellite rainfall estimations: new perspectives for meteorology and climate from the EURAINSAT project. Ann Geophys 46:363–372

    Google Scholar 

  • Levizzani V, Schmetz J, Lutz HJ, Kerkmann J, Alberoni PP, Cervino M (2001) Precipitation estimations from geostationary orbit and prospects for Meteosat Second Generation. J Meteor Appl 8:23–41

    Article  Google Scholar 

  • Mason I (1982) A model for assessment of weather forecasts. Aust Met Mag 30:291–303

    Google Scholar 

  • Nakajima T, King M (1990) Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: theory. J Atmos Sci 47:1878–1893

    Article  Google Scholar 

  • Nakajima TY, Nakajima T (1995) Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. J Atmos Sci 52:4043–4059

    Article  Google Scholar 

  • Nauss T, Kokhanovsky AA (2006) Discriminating raining from non-raining clouds at mid-latitudes using multispectral satellite data. Atmos Chem Phys 6:5031–5036

    Article  Google Scholar 

  • Nauss T, Kokhanovsky AA (2007) Assignment of rainfall confidence values using multispectral satellite data at mid-latitudes: First results. Adv Geosci 10:99–102

    Article  Google Scholar 

  • Platnick S, King MD, Ackerman SA, Menzel WP, Baum BA, Riedi JC, Frey RA (2003) The MODIS cloud products: algorithms and examples from Terra. IEEE Trans Geosci Remote Sens 41:459–473

    Article  Google Scholar 

  • Porcù F, Capacci D (2007) Seasonal sensitivity of a VIS-NIRIR rain-no rain classifier. Meteor Atmos Phys 101:147–157

    Article  Google Scholar 

  • Reudenbach C, Heinemann G, Heuel E, Bendix J, Winiger M (2001) Investigation of summertime convective rainfall in Western Europe based on a synergy of remote sensing data and numerical models. Meteorol Atmos Phys 76:23–41

    Article  Google Scholar 

  • Reudenbach C, Nauss T, Cermak J, Dobbermann M, Bendix J, Theissen W, Scheidgen P, Harmann O (2004) An integrated receiving and processing unit for MSG, NOAA and Terra/Aqua data. In: Proceedings of EUMETSAT 2003 conference, pp 291–297

  • Riedl J (1986) Radar-Flächenniederschlagsmessung. Promet 16:20–23

    Google Scholar 

  • Roebeling PD, Feijt AJ, Stammes P (2006) Cloud property retrievals for climate monitoring: implications of differences between spinning enhanced visible and infrared imager (SEVIRI) on METEOSAT-8 and advanced very high resolution radiometer (AVHRR) on NOAA-17. J Geophys Res 111:D20210. doi:10.1029/2005JD006990

  • Roebeling RA, Deneke HM, Feijt AJ (2008) Validation of cloud liquid water path retrievals from SEVIRI using one year of CloudNET observations. J Appl Meteor Climatol 47:206–222

    Article  Google Scholar 

  • Seltmann J (1997) Radarforschung im DWD: Vom Scan zum Produkt. Promet 26:32–42

    Google Scholar 

  • Stanski HR, Wilson LJ, Burrows WR (1989) Survey of common verification methods in meteorology. World Weather Watch Technical Report 8, WMO/TD 358, WMO, Genf, 114 pp

  • Thies B, Nauss T, Bendix J (2008a) Discriminating raining from non-raining cloud areas at mid-latitudes using Meteosat Second Generation SEVIRI day-time data. Atmos Chem Phys 8:1–9

    Article  Google Scholar 

  • Thies B, Nauss T, Bendix J (2008b) Delineation of raining from non-raining clouds during nighttime using Meteosat-8 data. Meteorol Appl 15:219–230

    Article  Google Scholar 

  • Turk J, Bauer P (2006) The International Precipitation Working Group and its role in the improvement of quantitative precipitation measurements. Bull Am Meteorol Soc 87:643–647

    Article  Google Scholar 

  • Vicente GA, Davenport JC, Scofield RA (2002) The role of orographic and parallax corrections on real time high resolution satellite rainfall rate distribution. Int J Remote Sens 23:221–230

    Article  Google Scholar 

  • Wetterzentrale (2007a) Archiv der stündlichen Wettermeldungen. Online available at: http://www.wetterzentrale.de/topkarten/tkdwdar2.htm

  • Wetterzentrale (2007b) Archiv der Europablitzkarten. Online available at: http://www.wetterzentrale.de/topkarten/tkbeoblar.htm

  • WWRP/WGNE Joint Working Group on Verification (2007) Forecast verification—issues, methods and FAQ. Online available at: http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/verif_web_page.html

Download references

Acknowledgments

The authors are grateful to the German Weather Service (DWD) for providing the ground-based precipitation dataset. The current study was funded by the German Ministry of Research and Education (BMBF) in the framework of GLOWA-Danube project (G-D/2004/TP-10, precipitation/remote sensing), as well as by the German Research Council DFG (BE 1780/18-1) within the SORT project. Furthermore, the authors would like to thank the anonymous reviewers for valuable remarks and comments which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Thies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thies, B., Turek, A., Nauss, T. et al. Weather type dependent quality assessment of a satellite-based rainfall detection scheme for the mid-latitudes. Meteorol Atmos Phys 107, 81–89 (2010). https://doi.org/10.1007/s00703-010-0076-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-010-0076-x

Keywords

Navigation