Skip to main content

Advertisement

Log in

Coupled weather research and forecasting–stochastic time-inverted lagrangian transport (WRF–STILT) model

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

This paper describes the coupling between a mesoscale numerical weather prediction model, the Weather Research and Forecasting (WRF) model, and a Lagrangian Particle Dispersion Model, the Stochastic Time-Inverted Lagrangian Transport (STILT) model. The primary motivation for developing this coupled model has been to reduce transport errors in continental-scale top–down estimates of terrestrial greenhouse gas fluxes. Examples of the model’s application are shown here for backward trajectory computations originating at CO2 measurement sites in North America. Owing to its unique features, including meteorological realism and large support base, good mass conservation properties, and a realistic treatment of convection within STILT, the WRF–STILT model offers an attractive tool for a wide range of applications, including inverse flux estimates, flight planning, satellite validation, emergency response and source attribution, air quality, and planetary exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arakawa A, Lamb V (1977) Computational design of the basic dynamical processes of the UCLA general circulation model. In: Methods in computational physics, vol 17. Academic Press, pp 174–267

  • Avey L, Garrett TJ, Stohl A (2007) Evaluation of the aerosol indirect effect using satellite, tracer transport model, and aircraft data from the International Consortium for Atmospheric Research on Transport and Transformation. J Geophys Res 112:D10S33. doi:10.1029/2006JD007581

    Article  Google Scholar 

  • Buckley RL (2000) Modeling atmospheric deposition from a cesium release in Spain using a stochastic transport model, 11th Joint Conference on the Applications of Air Pollution Meteorology with the Air and Waste Management Association, Long Beach, CA, American Meteorological Society, pp 190–195

  • Calvin W et al (2007) Report from the 2013 Mars Science Orbiter (MSO) Second Science Group, 72 pp., posted June 2007 by the Mars Exploration Program Analysis Group (MEPAG). Available at http://mepag.jpl.nasa.gov/reports/index.html

  • Chen S-H, Sun W-Y (2002) A one-dimensional time dependent cloud model. J Meteorol Soc Jpn 80(1):99–118

    Article  Google Scholar 

  • Chou M-D, Suarez M (1994) An efficient thermal infrared radiation parameterization for use in general circulation models. Tech Memo 104606, NASA, Washington, DC

  • Cotton WR et al (2003) RAMS 2001: current status and future directions. Meteorol Atmos Phys 82:5–29

    Article  Google Scholar 

  • Draxler RR, Hess GD (1997) Description of the HYSPLIT_4 modeling system, NOAA Tech. Memo. ERL ARL-224, 24 pp

  • Draxler RR, Hess GD (1998) An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition. Aust Meteorol Mag 47:295–308

    Google Scholar 

  • Fast JD (2005) Evaluation of the boundary layer characteristics and particulates in Mexico City predicted by WRF. In: Joint WRF/MM5 Users’ Workshop, NCAR, Boulder, CO. Available from http://www.wrf-model.org/wrfadmin/presentations.php

  • Flesch TK, Wilson JE, Yee E (1995) Backward-time Lagrangian stochastic dispersion models and their application to estimate gaseous emissions. J Appl Meteorol 34:1320–1332

    Article  Google Scholar 

  • Forster C et al (2004) Lagrangian transport model forecasts and a transport climatology for the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) measurement campaign. J Geophys Res 109:D07S92. doi:10.1029/2003JD003589

    Article  Google Scholar 

  • Forster C, Stohl A, Seibert P (2007) Parameterization of convective transport in a Lagrangian particle dispersion model and its evaluation. J Appl Meteorol Clim 46:403–422

    Article  Google Scholar 

  • Freitas SR, Silva Dias MAF, Silva Dias PL, Longo KM, Artaxo P, Andreae MO, Fisher H (2000) A convective kinematic trajectory technique for low-resolution atmospheric models. J Geophys Res 105(D19):24,375–24386

    Article  Google Scholar 

  • Freitas SR, Longo KM, Silva Dias MAF, Silva Dias PL, Chatfield R, Prins E, Artaxo P, Grell G, Recuero FS (2005) Monitoring transport of biomass burning emissions in South America. Environ Fluid Mech 5:135–167

    Article  Google Scholar 

  • Freitas SR, Longo KM, Silva Dias MAF, Chatfield R, Silva Dias P, Artaxo P, Andreae MO, Grell G, Rodrigues LF, Fazenda A, Panetta J (2009) The coupled aerosol and tracer transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS)—Part 1: model description and evaluation. Atmos Chem Phys 9:2843–2861

    Article  Google Scholar 

  • Galmarini S, Bianconi R, Klug W, Mikkelsen T, Addis R, Andronopoulos S, Astrup P, Baklanov A, Bartniki J, Bartzis JC, Bellasio R, Bompay F, Buckley R, Bouzom M, Champion H, D’Amours R, Davakis E, Eleveld H, Geertsema GT, Glaab H, Kollax M, Ilvonen M, Manning A, Pechinger U, Persson C, Polreich E, Potemski S, Prodanova M, Saltbones J, Slaper H, Sofiev MA, Syrakov D, Sørensen JH, Van der Auwera L, Valkama I, Zelazny R (2004) Ensemble dispersion forecasting—Part I: concept, approach and indicators. Atmos Environ 38:4607–4617

    Article  Google Scholar 

  • Gerbig C, Lin JC, Wofsy SC, Daube BC, Andrews AE, Stephens BB, Bakwin PS, Grainger CA (2003) Towards constraining regional scale fluxes of CO2 with atmospheric observations over a continent: 2. Analysis of COBRA data using a receptor-oriented framework. J Geophys Res 108(D24):4757. doi:10.1029/2003JD003770

    Article  Google Scholar 

  • Gerbig C, Korner S, Lin JC (2008) Vertical mixing in atmospheric tracer transport models: error characterization and propagation. Atmos Chem Phys 8:591–602

    Article  Google Scholar 

  • Gloor M, Fan S-M, Pacala S, Sarmiento J, Ramonet M (1999) A model-based evaluation of inversions of atmospheric transport, using annual mean mixing ratios, as a tool to monitor fluxes of nonreactive trace substances like CO2 on a continental scale. J Geophys Res 104(D12):14245–14260

    Article  Google Scholar 

  • Gourdji SM, Hirsch AI, Mueller KL, Andrews AE, Michalak AM (2009) Regional-scale geostatistical inverse modeling of North American CO2 fluxes: a synthetic data study. Atmos Chem Phys Discuss 9:22407–22458

    Article  Google Scholar 

  • Grell G (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787

    Article  Google Scholar 

  • Grell GA, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29:1693. doi:10.1029/2002GL015311

    Article  Google Scholar 

  • Grell GA, Dudhia J, Stauffer DR (1994) A description of the fifth generation Penn State/NCAR mesoscale model (MM5), NCAR/Tech. Note-398 + STR, pp. 64-72, Natl Cent For Atmos Res, Boulder, CO

  • Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res 113:D13103. doi:10.1029/2008JD009944

    Article  Google Scholar 

  • Iacono MJ, Nehrkorn T, Dudhia J, Wang W (2009) Application of RRTMG/McICA to the Advanced Research WRF weather forecast model. In: Proceedings, 19th ARM science team meeting, Office of Science, US Department of Energy, Louisville, KY. Available from http://www.arm.gov/publications/proceedings/conf19/display.php?id=NTky

  • Kort EA, Eluszkiewicz J, Stephens BB, Miller JB, Gerbig C, Nehrkorn T, Daube BC, Kaplan JO, Houweling S, Wofsy SC (2008) Emissions of CH4 and N2O over the United States and Canada based on a receptor-oriented modeling framework and COBRA-NA atmospheric observations. Geophys Res Lett 35:L18 808. doi:10.1029/2008GL034031

    Article  Google Scholar 

  • Lin JC, Gerbig C (2005) Accounting for the effect of transport errors on tracers inversions. Geophys Res Lett 32:L01802. doi:10.1029/2004GL021127

    Article  Google Scholar 

  • Lin Y-L, Farley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Appl Meteorol 22(6):1065–1092

    Article  Google Scholar 

  • Lin JC, Gerbig C, Wofsy SC, Daube BC, Andrews AE, Davis KJ, Grainger CA (2003) A near-field tool for simulating the upstream influence of atmospheric observations: the stochastic time-inverted lagrangian transport (STILT) model. J Geophys Res 108(D16):4493. doi:10.1029/2002JD003161

    Article  Google Scholar 

  • Lin JC, Gerbig C, Wofsy SC, Draxler R, Chow VY, Gottlieb EW (2007) Designing Lagrangian experiments to measure regional-scale trace gas fluxes. J Geophys Res 112 (D13312). doi:10.1029/2006JD008077

  • Medvigy D, Moorcroft PR, Avissar R, Walko RL (2005) Mass conservation and atmospheric dynamics in the regional atmospheric modeling system (RAMS). Environ Fluid Mech 5:109–134

    Article  Google Scholar 

  • Mesinger F, DiMego G, Kalnay E, Mitchell K, Shafran PC, Ebisuzaki W, Jovic D, Woollen J, Rogers E, Berbery EH, Ek MB, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi W (2006) North American regional reanalysis. Bull Am Meteorol Soc 87(3):343–360

    Article  Google Scholar 

  • Michalak AM, Mueller K, Gourdji S, Hirsch AI, Andrews AE, Lin JC, Nehrkorn T (2007) Bridging across spatial and temporal scales in North American carbon dioxide flux estimation through geostatistical analysis of scale-dependent relationships between carbon flux and auxiliary environmental data. EOS, Trans Amer Geophys Union 88(52), Fall Meet. Suppl., Abstract B42C-01

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16 663–16 682

    Article  Google Scholar 

  • Pielke RA, McNider RT, Segal M, Mahrer Y (1983) The use of a mesoscale numerical model for evaluations of pollutant transport and diffusion in coastal regions and over irregular terrain. Bull Am Meteor Soc 64(3):243–249

    Article  Google Scholar 

  • Pielke RA et al (1992) A comprehensive meteorological modeling system–RAMS. Meteorol Atmos Phys 49:69–91

    Article  Google Scholar 

  • Rodean HC (1996) Stochastic Lagrangian models of turbulent diffusion. Meteorological monographs. American Meteorological Society, Boston, MA, 26(48):84

  • Seibert P, Frank A (2004) Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode. Atmos Chem Phys 4:51–63

    Article  Google Scholar 

  • Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comp Phys 227:3465–3485

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2005) A description of the advanced research WRF version 2. Technical Note 468 + STR, MMM Division, NCAR, Boulder, CO, 88 pp. Available from http://www.mmm.ucar.edu/wrf/users/docs/arw v2.pdf

  • Stohl A, Forster C, Frank A, Seibert P, Wotawa G (2005) Technical note: the Lagrangian particle dispersion model FLEXPART version 6.2. Atmos Chem Phys 5:2461–2474

    Article  Google Scholar 

  • Thomson DJ (1987) Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J Fluid Mech 180:529–556

    Article  Google Scholar 

  • UCAR (2000) http://www.meted.ucar.edu/nwp/9cu1/ic2/frameset.htm?opentopic(2) Vertical Coordinates

  • Uliasz M (1993) The atmospheric mesoscale dispersion modeling system (MDMS). J Appl Meteor 32:139–149

    Article  Google Scholar 

  • Worden HM, Logan JA, Worden JR, Beer R, Bowman K, Clough SA, Eldering A, Fisher BM, Gunson MR, Herman RL, Kulawik SS, Lampel MC, Luo M, Megretskaia IA, Osterman GB, Shephard MW (2007) Comparisons of tropospheric emission spectrometer (TES) ozone profiles to ozonesondes: methods and initial results. J Geophys Res 112:D03309. doi:10.1029/2006JD007258

    Article  Google Scholar 

  • Yamada T, Bunker S (1988) Development of a nested grid, second moment turbulence closure model and application to the 1982 ASCOT Brush Creek data simulation. J Appl Meteor 27(5):562–578

    Article  Google Scholar 

  • Zhao C, Andrews AE, Bianco L, Eluszkiewicz J, Hirsch A, MacDonald C, Nehrkorn T, Fischer ML (2009) Atmospheric inverse estimates of methane emissions from Central California. J Geophys Res 114:D16302. doi:10.1029/2008JD011671

    Article  Google Scholar 

Download references

Acknowledgments

Work at AER has been supported by the NASA Terrestrial Ecology Program (contract NNH05CC42C) and the National Science Foundation Atmospheric Chemistry Program (Grant ATM-0836153). The original manuscript was improved through constructive reviews by Arlyn Andrews (NOAA/Earth System Research Laboratory) and an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Nehrkorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nehrkorn, T., Eluszkiewicz, J., Wofsy, S.C. et al. Coupled weather research and forecasting–stochastic time-inverted lagrangian transport (WRF–STILT) model. Meteorol Atmos Phys 107, 51–64 (2010). https://doi.org/10.1007/s00703-010-0068-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-010-0068-x

Keywords

Navigation