Skip to main content

Advertisement

Log in

Effects of sea surface temperature, radiation, cloud microphysics, and diurnal variations on vertical structures of tropical tropospheric temperature: a two-dimensional equilibrium cloud-resolving modeling study

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

The effects of sea surface temperature (SST), radiation, cloud microphysics, and diurnal variations on the vertical structure of tropical tropospheric temperature are investigated by analyzing 10 two-dimensional equilibrium cloud-resolving model simulation data. The increase of SST, exclusion of diurnal variation of SST, and inclusion of diurnal variation of solar zenith angle, radiative effects of ice clouds, and ice microphysics could lead to tropical tropospheric warming and increase of tropopause height. The increase of SST and the suppression of its diurnal variation enhance the warming in the lower and upper troposphere, respectively, through increasing latent heat and decreasing IR cooling. The inclusion of diurnal variation of solar zenith angle increases the tropospheric warming through increasing solar heating. The inclusion of cloud radiative effects increases tropospheric warming through suppressing IR cooling in the mid and lower troposphere and enhancing solar heating in the upper troposphere. The inclusion of ice microphysics barely increases warming in the mid and lower troposphere because the warming from ice radiative effects is nearly offset by the cooling from ice microphysical effects, whereas it causes the large warming enhancement in the upper troposphere due to the dominance of ice radiative effects. The tropopause height is increased mainly through the large enhancement of IR cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Austin J, Reichler TJ (2008) Long-term evolution of the cold point tropical tropopause: simulation results and attribution analysis. J Geophys Res 113:D00B10. doi:10.1029/2007JD009768

  • Chou M-D, Suarez MJ (1994) An efficient thermal infrared radiation parameterization for use in general circulation model. NASA Tech Memo 104606, vol 3, 85 pp (Available from NASA/Goddard Space Flight Center, Code 913, Greenbelt, MD 20771)

  • Chou M-D, Kratz DP, Ridgway W (1991) Infrared radiation parameterization in numerical climate models. J Clim 4:424–437

    Article  Google Scholar 

  • Chou M-D, Suarez MJ, Ho C-H, Yan MM-H, Lee K-T (1998) Parameterizations for cloud overlapping and shortwave single scattering properties for use in general circulation and cloud ensemble models. J Atmos Sci 55:201–214

    Google Scholar 

  • Cui X, Gao S (2008) Effects of zonal perturbations of sea surface temperature on tropical equilibrium states: a cloud-resolving modeling study. Prog Nat Sci 18:413–419

    Article  Google Scholar 

  • Fomichev VI, Johnson AI, Grandpre JDE, Beagley SR, McLandress C, Semeniuk K, Shepherd TG (2007) Response of the middle atmosphere to CO2 doubling: results from the Canadian Middle Atmosphere Model. J Clim 20:1121–1144

    Article  Google Scholar 

  • Gao S (2007) A three-dimensional dynamic vorticity vector associated with tropical oceanic convection. J Geophys Res 112:D18109. doi:10.1029/2006JD008247

    Article  Google Scholar 

  • Gao S (2008) A cloud-resolving modeling study of cloud radiative effects on tropical equilibrium states. J Geophys Res 113:03108. doi:10.1029/2007JD009177

    Article  Google Scholar 

  • Gao S, Li X (2008) Cloud-resolving modeling of convective processes. Springer, Heidelberg, 206 pp

  • Gao S, Ping F, Li X, Tao W-K (2004) A convective vorticity vector associated with tropical convection: a two-dimensional cloud-resolving modeling study. J Geophys Res 109:D14106. doi:10.1029/2004JD004807

    Article  Google Scholar 

  • Gao S, Cui X, Zhou Y, Li X, Tao W-K (2005) A modeling study of moist and dynamic vorticity vectors associated with 2D tropical convection. J Geophys Res 110:D17104. doi:10.1029/2004JD005675

    Article  Google Scholar 

  • Gao S, Ran L, Li X (2006) Impacts of ice microphysics on rainfall and thermodynamic processes in the tropical deep convective regime: a 2D cloud-resolving modeling study. Mon Weather Rev 134:3015–3024

    Article  Google Scholar 

  • Gao S, Li X, Tao W-K, Shie C-L, Lang S (2007a) Convective and moist vorticity vectors associated with tropical oceanic convection: a three-dimensional cloud-resolving simulation. J Geophys Res 112:D01105. doi:10.1029/2006JD007179

    Article  Google Scholar 

  • Gao S, Zhou Y, Li X (2007b) Effects of diurnal variations on tropical equilibrium states: a two-dimensional cloud-resolving modeling study. J Atmos Sci 64:656–664

    Article  Google Scholar 

  • Grabowski WW, Moncrieff MW, Kiehl JT (1996) Long-term behaviour of precipitating tropical cloud systems: a numerical study. Q J R Meteorol Soc 122:1019–1042

    Article  Google Scholar 

  • Grabowski WW, Wu X, Moncrieff MW, Hall WD (1998) Cloud-resolving model of tropical cloud systems during Phase III of GATE. Part II: effects of resolution and the third spatial dimension. J Atmos Sci 55:3264–3282

    Article  Google Scholar 

  • Khairoutdinov MF, Randall DA (2003) Cloud-resolving modeling of the ARM summer 1997 IOP: model formulation, results, uncertainties, and sensitivities. J Atmos Sci 60:607–625

    Article  Google Scholar 

  • Knutson TR, Delworth TL, Dixon KW, Held IM, Lu J, Ramaswamy V, Schwarzkopf MD (2006) Assessment of twentieth-century regional surface temperature trends using the GFDL CM2 coupled models. J Clim 19:1624–1651

    Article  Google Scholar 

  • Krueger SK, Fu Q, Liou KN, Chin H-NS (1995) Improvement of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J Appl Meteorol 34:281–287

    Article  Google Scholar 

  • Lau K-M, Sui C-H, Chou M-D, Tao W-K (1994) An inquiry into the cirrus cloud thermostat effect for tropical sea surface temperature. Geophys Res Lett 21:1157–1160

    Article  Google Scholar 

  • Li X, Sui C-H, Lau K-M, Chou M-D (1999) Large-scale forcing and cloud–radiation interaction in the tropical deep convective regime. J Atmos Sci 56:3028–3042

    Article  Google Scholar 

  • Lin Y-L, Farley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteor 22:1065–1092

    Article  Google Scholar 

  • Moncrieff MW, Miller MJ (1976) The dynamics and simulation of tropical cumulonimbus and squall line. Q J R Meteorol Soc 102:373–394

    Article  Google Scholar 

  • Nakajima K, Matsuno T (1988) Numerical experiments concerning the origin of cloud clusters in the tropical atmosphere. J Meteor Soc Jpn 66:309–329

    Google Scholar 

  • Ping F, Luo Z, Li X (2007) Microphysical and radiative effects of ice microphysics on tropical equilibrium states: a two-dimensional cloud-resolving modeling study. Mon Weather Rev 135:2794–2802

    Article  Google Scholar 

  • Ramanathan V, Collins W (1991) Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Nino. Nature 351:27–32

    Article  Google Scholar 

  • Robe FR, Emanuel KA (1996) Moist convective scaling: some inferences from three-dimensional cloud ensemble simulations. J Atmos Sci 53:3265–3275

    Article  Google Scholar 

  • Rotunno R, Klemp JB, Weisman ML (1988) A theory for strong, long-lived squall lines. J Atmos Sci 45:463–485

    Article  Google Scholar 

  • Rutledge SA, Hobbs PV (1983) The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part VIII: a model for the “seeder-feeder” process in warm-frontal rainbands. J Atmos Sci 40:1185–1206

    Article  Google Scholar 

  • Rutledge SA, Hobbs PV (1984) The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part XII: a diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J Atmos Sci 41:2949–2972

    Article  Google Scholar 

  • Santer BD, Wehner MF, Wigley TML, Sausen R, Meehl GA, Taylor KE, Ammann C, Arblaster J, Washington WM, Boyle JS, Bruggemann W (2003) Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 301:479–483

    Article  Google Scholar 

  • Santer BD, Wigley TML, Mears C, Wentz FJ, Klein SA, Seidel DJ, Taylor KE, Thorne PW, Wehner MF, Gleckler PJ, Boyle JS, Collins WD, Dixon KW, Doutriaux C, Free M, Fu Q, Hansen JE, Jones GS, Ruedy R, Karl TR, Lanzante JR, Heehl GA, Ramaswamy V, Russell G, Schmidt GA (2005) Amplification of surface temperature trends and variability in the tropical atmosphere. Science 309:1551–1556

    Article  Google Scholar 

  • Seidel DJ, Randel WJ (2006) Variability and trends in the global tropopause estimated from radiosonde data. J Geophys Res 111:21101. doi:10.1029/2006JD007363

    Article  Google Scholar 

  • Seidel DJ, Ross RJ, Angell JK, Reid GC (2001) Climatological characteristics of the tropical tropopause as revealed by radiosondes. J Geophys Res 106:7857–7878

    Article  Google Scholar 

  • Shie C-L, Tao W-K, Simpson J, Sui C-H (2003) Quasi-equilibrium states in the tropics simulated by a cloud-resolving model. Part I: specific features and budget analysis. J Clim 16:817–833

    Article  Google Scholar 

  • Soong ST, Ogura Y (1980) Response of tradewind cumuli to large-scale processes. J Atmos Sci 37:2035–2050

    Article  Google Scholar 

  • Soong ST, Tao WK (1980) Response of deep tropical cumulus clouds to mesoscale processes. J Atmos Sci 37:2016–2034

    Article  Google Scholar 

  • Sui C-H, Lau K-M, Tao W-K, Simpson J (1994) The tropical water and energy cycles in a cumulus ensemble model. Part I: equilibrium climate. J Atmos Sci 51:711–728

    Article  Google Scholar 

  • Sui C-H, Lau K-M, Takayabu YN, Short D (1997) Diurnal variations in tropical oceanic cumulus convection during TOGA COARE. J Atmos Sci 54:639–655

    Article  Google Scholar 

  • Sui C-H, Li X, Lau K-M (1998) Radiative-convective processes in simulated diurnal variations of tropical oceanic convection. J Atmos Sci 55:2345–2359

    Article  Google Scholar 

  • Sui C-H, Li X, Yang M-J, Huang H-L (2005) Estimation of oceanic precipitation efficiency in cloud models. J Atmos Sci 62:4358–4370

    Article  Google Scholar 

  • Tao W-K, Simpson J (1993) The Goddard Cumulus Ensemble model. Part I: model description. Terr Atmos Oceanic Sci 4:35–72

    Google Scholar 

  • Tao W-K, Soong S-T (1986) The study of the response of deep tropical clouds to mesoscale processes: three-dimensional numerical experiments. J Atmos Sci 43:2653–2676

    Article  Google Scholar 

  • Tao W-K, Simpson J, Soong S-T (1987) Statistical properties of a cloud ensemble: a numerical study. J Atmos Sci 44:3175–3187

    Article  Google Scholar 

  • Tao W-K, Simpson J, McCumber M (1989) An ice-water saturation adjustment. Mon Weather Rev 117:231–235

    Article  Google Scholar 

  • Tao W-K, Simpson J, Sui C-H, Shie C-L, Zhou B, Lau K-M, Moncrieff MW (1999) Equilibrium states simulated by cloud-resolving models. J Atmos Sci 56:3128–3139

    Article  Google Scholar 

  • Tett SFB, Jones GS, Scott PA, Hill DC, Mitchell JFB, Allen MR, Ingram WJ, Johns TC, Johnson CE, Jones A, Roberts DL, Sexton DMH, Woodage MJ (2002) Estimation of natural and anthropogenic contributions to twentieth century temperature change. J Geophys Res 107. doi:10.1029/2000JD000028

  • Tompkins AM (2000) The impact of dimensionality on long-term cloud-resolving model simulations. Mon Weather Rev 128:1521–1535

    Article  Google Scholar 

  • Wu X, Moncrieff MW (1999) Effects of sea surface temperature and large-scale dynamics on the thermodynamic equilibrium state and convection over the tropical western Pacific. J Geophys Res 104:6093–6100

    Article  Google Scholar 

  • Xu K-M, Randall DA (1999) A sensitivity study of radiative-convective equilibrium in the tropics with a convection-resolving model. J Atmos Sci 56:3385–3399

    Article  Google Scholar 

  • Xu K-M, Cederwall RT, Donner LJ, Grabowski WW, Guichard F, Johnson DE, Khairoutdinov M, Krueger SK, Petch JC, Randall DA, Seman CJ, Tao W-K, Wang D, Xie SC, Yio JJ, Zhang M-H (2002) An intercomparison of cloud resolving models with the Atmospheric Radiation Measurement summer 1997 Intensive Observation Period data. Q J R Meteorol Soc 128:593–624

    Article  Google Scholar 

  • Zeng X, Tao W-K, Zhang M, Hou AY, Xie S, Lang S, Li X, O’C Starr D, Li X (2009) A contribution of ice nuclei to global warming. Q J R Meteorol Soc. doi:10.1012/qj.449

  • Zou CZ, Goldberg MD, Cheng Z, Grody NC, Sullivan JT, Cao C, Tarpley D (2006) Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpass. J Geophys Res 111:19114. doi:10.1029/2005JD006798

    Article  Google Scholar 

  • Zou C-Z, Gao M, Goldberg MD (2009) Error structure and atmospheric temperature trends in observations from the microwave sounding unit. J Clim 22:1661–1681

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. S. Gao and F. Ping at the institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China for providing us their 10 two-dimensional equilibrium cloud-resolving model simulation data, and two anonymous reviewers for their constructive comments. The manuscript contents are solely the opinions of the authors and do not constitute a statement of policy, decision, or position on behalf of NOAA or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Zou, CZ. Effects of sea surface temperature, radiation, cloud microphysics, and diurnal variations on vertical structures of tropical tropospheric temperature: a two-dimensional equilibrium cloud-resolving modeling study. Meteorol Atmos Phys 105, 85–98 (2009). https://doi.org/10.1007/s00703-009-0039-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-009-0039-2

Keywords

Navigation