Skip to main content

Advertisement

Log in

Homocysteine, vitamin B metabolites, dopamine-substituting compounds, and symptomatology in Parkinson’s disease: clinical and therapeutic considerations

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Emerging studies suggest a correlation between elevated plasma homocysteine (hcy) levels and the risk of atherosclerosis, vascular disorders, and neurodegenerative diseases, including Parkinson's disease (PD). This narrative review delves into the intricate relationships between Hcy, vitamin B metabolites, dopamine-substituting compounds, and various symptoms of PD. Patients undergoing a long-term L-dopa/dopa-decarboxylase inhibitor (DDI) regimen, especially without a concurrent catechol-O-methyl transferase (COMT) inhibitor or methyl group-donating vitamin supplementation, such as vitamins B6 and B12, exhibit an elevation in Hcy and a decline in vitamin B metabolites. These altered concentrations appear to be associated with heightened risks of developing non-motor symptoms, including peripheral neuropathy and cognitive disturbances. The review underscores the impact of levodopa metabolism via COMT on homocysteine levels. In light of these findings, we advocate for the supplementation of methyl group-donating vitamins, notably B6 and B12, in patients undergoing a high-dose L-dopa/DDI regimen, particularly those treated with L-dopa/carbidopa intestinal gel (LCIG) infusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data supporting the findings of this study is available from the corresponding author, [Bhidayasiri R], upon reasonable request.

References

  • Aden E, Carlsson M, Poortvliet E, Stenlund H, Linder J, Edstrom M, Forsgren L, Haglin L (2011) Dietary intake and olfactory function in patients with newly diagnosed Parkinson’s disease: a case-control study. Nutr Neurosci 14:25–31

    PubMed  Google Scholar 

  • Anamnart C, Kitjarak R (2021) Effects of vitamin B12, folate, and entacapone on homocysteine levels in levodopa-treated Parkinson’s disease patients: a randomized controlled study. J Clin Neurosci 88:226–231

    CAS  PubMed  Google Scholar 

  • Antonini A, Bondiolotti G, Natuzzi F, Bareggi SR (2010) Levodopa and 3-OMD levels in Parkinson patients treated with Duodopa. Eur Neuropsychopharmacol 20:683–687

    CAS  PubMed  Google Scholar 

  • Baviera-Munoz R, Buigues-Lafuente A, Campins-Romeu M, Garces-Sanchez M, Martinez-Torres I (2022) Refractory status epilepticus due to vitamin B(6) deficit in a Parkinson’s disease patient in treatment with levodopa/carbidopa intestinal gel. Neurologia (engl Ed) 37:608–609

    CAS  PubMed  Google Scholar 

  • Belcastro V, Pierguidi L, Castrioto A, Menichetti C, Gorgone G, Ientile R, Pisani F, Rossi A, Calabresi P, Tambasco N (2010) Hyperhomocysteinemia recurrence in levodopa-treated Parkinson’s disease patients. Eur J Neurol 17:661–665

    CAS  PubMed  Google Scholar 

  • Ben Shlomo Y, Marmot MG (1995) Survival and cause of death in a cohort of patients with parkinsonism: Possible clues to aetiology? J Neurol Neurosurg Psychiatry 58:293–299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bialecka M, Robowski P, Honczarenko K, Roszmann A, Slawek J (2009) Genetic and environmental factors for hyperhomocysteinaemia and its clinical implications in Parkinson’s disease. Neurol Neurochir Pol 43:272–285

    CAS  PubMed  Google Scholar 

  • Boelens Keun JT, Arnoldussen IA, Vriend C, Van De RO (2021) Dietary approaches to improve efficacy and control side effects of levodopa therapy in Parkinson’s disease: a systematic review. Adv Nutr 12:2265–2287

    PubMed  PubMed Central  Google Scholar 

  • Botez MI, Peyronnard JM, Bachevalier J, Charron L (1978) Polyneuropathy and folate deficiency. Arch Neurol 35:581–584

    CAS  PubMed  Google Scholar 

  • Bottiglieri T, Hyland K, Reynolds EH (1994) The clinical potential of ademetionine (S-adenosylmethionine) in neurological disorders. Drugs 48(2):137–152. https://doi.org/10.2165/00003495-199448020-00002

    Article  CAS  PubMed  Google Scholar 

  • Brosnan JT, Jacobs RL, Stead LM, Brosnan ME (2004) Methylation demand: a key determinant of homocysteine metabolism. Acta Biochim Pol 51:405–413

    CAS  PubMed  Google Scholar 

  • Ceravolo R, Cossu G, Bandettini di Poggio M, Santoro L, Barone P, Zibetti M, Frosini D, Nicoletti V, Manganelli F, Iodice R, Picillo M, Merola A, Lopiano L, Paribello A, Manca D, Melis M, Marchese R, Borelli P, Mereu A, Contu P, Abbruzzese G, Bonuccelli U (2013) Neuropathy and levodopa in Parkinson’s disease: evidence from a multicenter study. Mov Disord 28(10):1391–1397. https://doi.org/10.1002/mds.25585

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zhang SM, Schwarzschild MA, Hernan MA, Logroscino G, Willett WC, Ascherio A (2004) Folate intake and risk of Parkinson’s disease. Am J Epidemiol 160:368–375

    PubMed  Google Scholar 

  • Choi YJ, Choi IY, Jang W, Jeong SM, Park S, Han K, Lee Y, Lee DH, Shin DW (2021) Gastrectomy, vitamin B12 supplementation and the risk of Parkinson’s disease: a nationwide cohort study. Parkinsonism Relat Disord 83:15–21

    CAS  PubMed  Google Scholar 

  • Christine CW, Auinger P, Joslin A, Yelpaala Y, Green R (2018) Vitamin B12 and homocysteine levels predict different outcomes in early Parkinson’s disease. Mov Disord 33:762–770

    CAS  PubMed  Google Scholar 

  • Christine CW, Auinger P, Saleh N, Tian M, Bottiglieri T, Arning E, Tran NK, Ueland PM, Green R (2020) Relationship of cerebrospinal fluid vitamin B12 status markers with Parkinson’s disease progression. Mov Disord 35:1466–1471

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Lau LM, Koudstaal PJ, Witteman JC, Hofman A, Breteler MM (2006) Dietary folate, vitamin B12, and vitamin B6 and the risk of Parkinson disease. Neurology 67:315–318

    PubMed  Google Scholar 

  • Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A, Lang A, Olanow CW, Tanner C, Marek K (2004) Levodopa and the progression of Parkinson’s disease. N Engl J Med 351:2498–2508

    CAS  PubMed  Google Scholar 

  • Fan X, Zhang L, Li H, Chen G, Qi G, Ma X, Jin Y (2020) Role of homocysteine in the development and progression of Parkinson’s disease. Ann Clin Transl Neurol 7(11):2332–2338. https://doi.org/10.1002/acn3.51227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goel A, Narayan SK, Sugumaran R (2022) Neuropsychiatric features, health-related quality of life, and caregiver burden in Parkinson’s disease. Ann Indian Acad Neurol 25:1147–1152

    PubMed  PubMed Central  Google Scholar 

  • Haglin L, Johansson I, Forsgren L, Backman L (2017) Intake of vitamin B before onset of Parkinson’s disease and atypical parkinsonism and olfactory function at the time of diagnosis. Eur J Clin Nutr 71:97–102

    CAS  PubMed  Google Scholar 

  • Hassin-Baer S, Cohen O, Vakil E, Sela BA, Nitsan Z, Schwartz R, Chapman J, Tanne D (2006) Plasma homocysteine levels and Parkinson disease: disease progression, carotid intima-media thickness and neuropsychiatric complications. Clin Neuropharmacol 29:305–311

    CAS  PubMed  Google Scholar 

  • Isobe C, Abe T, Terayama Y (2010) L-Dopa therapy increases homocysteine concentration in cerebrospinal fluid from patients with Parkinson’s disease. J Clin Neurosci 17:717–721

    CAS  PubMed  Google Scholar 

  • Jugel C, Ehlen F, Taskin B, Marzinzik F, Muller T, Klostermann F (2013) Neuropathy in Parkinson’s disease patients with intestinal levodopa infusion versus oral drugs. PLoS ONE 8:e66639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klostermann F, Jugel C, Muller T, Marzinzik F (2012) Malnutritional neuropathy under intestinal levodopa infusion. J Neural Transm 119:369–372

    CAS  PubMed  Google Scholar 

  • Kocer B, Guven H, Comoglu SS (2016) Homocysteine levels in Parkinson’s disease: Is entacapone effective? Biomed Res Int 2016:7563705

    PubMed  PubMed Central  Google Scholar 

  • Kuhn W, Roebroek R, Blom H, Van OD, Przuntek H, Kretschmer A, Buttner T, Woitalla D, Muller T (1998) Elevated plasma levels of homocysteine in Parkinson’s disease. Eur Neurol 40:225–227

    CAS  PubMed  Google Scholar 

  • Lamberti P, Zoccolella S, Iliceto G, Armenise E, Fraddosio A, De MM, Livrea P (2005) Effects of levodopa and COMT inhibitors on plasma homocysteine in Parkinson’s disease patients. Mov Disord 20:69–72

    PubMed  Google Scholar 

  • Lee SH, Kim MJ, Kim BJ, Kim SR, Chun S, Kim HK, Ryu JS, Kim GS, Lee MC, Chung SJ, Koh JM (2010) Hyperhomocysteinemia due to levodopa treatment as a risk factor for osteoporosis in patients with Parkinson’s disease. Calcif Tissue Int 86:132–141

    PubMed  Google Scholar 

  • Licking N, Murchison C, Cholerton B, Zabetian CP, Hu SC, Montine TJ, Peterson-Hiller AL, Chung KA, Edwards K, Leverenz JB, Quinn JF (2017) Homocysteine and cognitive function in Parkinson’s disease. Parkinsonism Relat Disord 44:1–5

    PubMed  PubMed Central  Google Scholar 

  • Lipton SA, Kim WK, Choi YB, Kumar S, D’Emilia DM, Rayudu PV, Arnelle DR, Stamler JS (1997) Neurotoxicity associated with dual actions of homocysteine at the N-methyl-d-aspartate receptor. Proc Natl Acad Sci U S A 94(11):5923–5928. https://doi.org/10.1073/pnas.94.11.5923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lizarraga KJ, Lang AE (2022) Vitamins B6 and B12, levodopa, and their complex interactions in patients with Parkinson’s disease. Brain 145:e77–e78

    PubMed  Google Scholar 

  • Loens S, Chorbadzhieva E, Kleimann A, Dressler D, Schrader C (2017) Effects of levodopa/carbidopa intestinal gel versus oral levodopa/carbidopa on B vitamin levels and neuropathy. Brain Behav 7:e00698

    PubMed  PubMed Central  Google Scholar 

  • Martignoni E, Tassorelli C, Nappi G, Zangaglia R, Pacchetti C, Blandini F (2007) Homocysteine and Parkinson’s disease: A dangerous liaison? J Neurol Sci 257:31–37

    CAS  PubMed  Google Scholar 

  • Martinez-Martin P, Skorvanek M, Henriksen T, Lindvall S, Domingos J, Alobaidi A, Kandukuri PL, Chaudhari VS, Patel AB, Parra JC, Pike J, Antonini A (2023) Impact of advanced Parkinson’s disease on caregivers: an international real-world study. J Neurol 270:2162–2173

    PubMed  PubMed Central  Google Scholar 

  • McCarter SJ, Stang C, Turcano P, Mielke MM, Ali F, Bower JH, Savica R (2020) Higher vitamin B12 level at Parkinson’s disease diagnosis is associated with lower risk of future dementia. Parkinsonism Relat Disord 73:19–22

    PubMed  Google Scholar 

  • McCully KS (2015) Homocysteine metabolism, atherosclerosis, and diseases of aging. Compr Physiol 6(1):471–505. https://doi.org/10.1002/cphy.c150021

    Article  PubMed  Google Scholar 

  • Merola A, Romagnolo A, Zibetti M, Bernardini A, Cocito D, Lopiano L (2016) Peripheral neuropathy associated with levodopa–carbidopa intestinal infusion: a long-term prospective assessment. Eur J Neurol 23:501–509

    CAS  PubMed  Google Scholar 

  • Miller JW, Green R, Mungas DM, Reed BR, Jagust WJ (2002) Homocysteine, vitamin B6, and vascular disease in AD patients. Neurology 58:1471–1475

    CAS  PubMed  Google Scholar 

  • Mudd SH, Ebert MH, Scriver CR (1980) Labile methyl group balances in the human: the role of sarcosine. Metabolism 29(8):707–720. https://doi.org/10.1016/0026-0495(80)90192-4

    Article  CAS  PubMed  Google Scholar 

  • Muller T (2008) Role of homocysteine in the treatment of Parkinson’s disease. Expert Rev Neurother 8:957–967

    PubMed  Google Scholar 

  • Muller T (2011) Motor complications, levodopa metabolism and progression of Parkinson’s disease. Expert Opin Drug Metab Toxicol 7:847–855

    PubMed  Google Scholar 

  • Muller T (2022) What are the main considerations when prescribing pharmacotherapy for Parkinson’s disease? Expert Opin Pharmacother 23:745–750

    PubMed  Google Scholar 

  • Muller T, Kuhn W (2006) Tolcapone decreases plasma levels of S-adenosyl-l-homocysteine and homocysteine in treated Parkinson’s disease patients. Eur J Clin Pharmacol 62:447–450

    PubMed  Google Scholar 

  • Muller T, Kuhn W (2009) Homocysteine levels after acute levodopa intake in patients with Parkinson’s disease. Mov Disord 24:1339–1343

    PubMed  Google Scholar 

  • Muller T, Muhlack S (2009) Peripheral COMT inhibition prevents levodopa associated homocysteine increase. J Neural Transm 116:1253–1256

    PubMed  Google Scholar 

  • Muller T, Werne B, Fowler B, Kuhn W (1999) Nigral endothelial dysfunction, homocysteine, and Parkinson’s disease. Lancet 354:126–127

    CAS  PubMed  Google Scholar 

  • Muller T, Woitalla D, Fowler B, Kuhn W (2002) 3-OMD and homocysteine plasma levels in parkinsonian patients. J Neural Transm 109:175–179

    CAS  PubMed  Google Scholar 

  • Muller T, Renger K, Kuhn W (2004) Levodopa-associated increase of homocysteine levels and sural axonal neurodegeneration. Arch Neurol 61:657–660

    PubMed  Google Scholar 

  • Muller T, Erdmann C, Muhlack S, Bremen D, Przuntek H, Goetze O, Woitalla D (2006) Pharmacokinetic behaviour of levodopa and 3-O-methyldopa after repeat administration of levodopa/carbidopa with and without entacapone in patients with Parkinson’s disease. J Neural Transm 113:1441–1448

    CAS  PubMed  Google Scholar 

  • Muller T, Jugel C, Ehret R, Ebersbach G, Bengel G, Muhlack S, Klostermann F (2011a) Elevation of total homocysteine levels in patients with Parkinson’s disease treated with duodenal levodopa/carbidopa gel. J Neural Transm 118:1329–1333

    PubMed  Google Scholar 

  • Muller T, Jugel C, Ehret R, Ebersbach G, Bengel G, Muhlack S, Klostermann F (2011b) Elevation of total homocysteine levels in patients with Parkinson’s disease treated with duodenal levodopa/carbidopa gel. J Neural Transm (vienna) 118:1329–1333

    PubMed  Google Scholar 

  • Muller T, Woitalla D, Muhlack S (2011c) Inhibition of catechol-O-methyltransferase modifies acute homocysteine rise during repeated levodopa application in patients with Parkinson’s disease. Naunyn Schmiedebergs Arch Pharmacol 383:627–633

    PubMed  Google Scholar 

  • Muller T, Van LT, Cornblath DR, Odin P, Klostermann F, Grandas FJ, Ebersbach G, Urban PP, Valldeoriola F, Antonini A (2013) Peripheral neuropathy in Parkinson’s disease: levodopa exposure and implications for duodenal delivery. Parkinsonism Relat Disord 19:501–507

    PubMed  Google Scholar 

  • Muller T, Jugel C, Muhlack S, Klostermann F (2013) Methyl group-donating vitamins elevate 3-O-methyldopa in patients with Parkinson disease. Clin Neuropharmacol 36:52–54

    PubMed  Google Scholar 

  • Muller T, Schlegel E, Zingler S, Thiede HM (2022) Effects of one-day application of levodopa/carbidopa/entacapone versus levodopa/carbidopa/opicapone in Parkinson’s disease patients. Cells 11:1

    Google Scholar 

  • Nakaso K, Yasui K, Kowa H, Kusumi M, Ueda K, Yoshimoto Y, Takeshima T, Sasaki K, Nakashima K (2003) Hypertrophy of IMC of carotid artery in Parkinson’s disease is associated with L-DOPA, homocysteine, and MTHFR genotype. J Neurol Sci 207:19–23

    CAS  PubMed  Google Scholar 

  • Nevrly M, Kanovsky P, Vranova H, Langova K, Hlustik P (2009) Effect of levodopa and entacapone treatment on plasma homocysteine levels in Parkinson’s disease patients. Parkinsonism Relat Disord 15:477–478

    CAS  PubMed  Google Scholar 

  • Olanow CW, Obeso JA (2000) Pulsatile stimulation of dopamine receptors and levodopa-induced motor complications in Parkinson’s disease: implications for the early use of COMT inhibitors. Neurology 55:S72–S77

    CAS  PubMed  Google Scholar 

  • Ostrem JL, Kang GA, Subramanian I, Guarnieri M, Hubble J, Rabinowicz AL, Bronstein J (2005) The effect of entacapone on homocysteine levels in Parkinson disease. Neurology 64:1482

    CAS  PubMed  Google Scholar 

  • O’Suilleabhain PE, Bottiglieri T, Dewey RB Jr, Sharma S, Az-Arrastia R (2004) Modest increase in plasma homocysteine follows levodopa initiation in Parkinson’s disease. Mov Disord 19:1403–1408

    PubMed  Google Scholar 

  • O’Suilleabhain PE, Oberle R, Bartis C, Dewey RB Jr, Bottiglieri T, Az-Arrastia R (2006) Clinical course in Parkinson’s disease with elevated homocysteine. Parkinsonism Relat Disord 12:103–107

    PubMed  Google Scholar 

  • Ozer F, Meral H, Hanoglu L, Aydemir T, Yilsen M, Cetin S, Ozturk O, Seval H, Koldas M (2006) Plasma homocysteine levels in patients treated with levodopa: motor and cognitive associations. Neurol Res 28:853–858

    CAS  PubMed  Google Scholar 

  • Ozkan S, Colak O, Kutlu C, Ertan M, Alatas O (2004) Plasma homocysteine levels in pergolide-treated Parkinson disease patients. Clin Neuropharmacol 27:163–165

    PubMed  Google Scholar 

  • Pauls KAM, Toppila J, Koivu M, Eerola-Rautio J, Udd M, Pekkonen E (2021) Polyneuropathy monitoring in Parkinson’s disease patients treated with levodopa/carbidopa intestinal gel. Brain Behav 11:e2408

    PubMed  PubMed Central  Google Scholar 

  • Postuma RB, Espay AJ, Zadikoff C, Suchowersky O, Martin WR, Lafontaine AL, Ranawaya R, Camicioli R, Lang AE (2006) Vitamins and entacapone in levodopa-induced hyperhomocysteinemia: a randomized controlled study. Neurology 66:1941–1943

    CAS  PubMed  Google Scholar 

  • Przuntek H, Muller T, Riederer P (2004) Diagnostic staging of Parkinson’s disease: conceptual aspects. J Neural Transm 111:201–216

    CAS  PubMed  Google Scholar 

  • Rajabally YA, Martey J (2013) Levodopa, vitamins, ageing and the neuropathy of Parkinson’s disease. J Neurol 260:2844–2848

    CAS  PubMed  Google Scholar 

  • Ramachandran A, Jose J, Gafoor VA, Das S, Balaram N (2022) Prevalence and risk factors of peripheral neuropathy in Parkinson’s disease. Ann Indian Acad Neurol 25:1109–1115

    PubMed  PubMed Central  Google Scholar 

  • Raman G, Tatsioni A, Chung M, Rosenberg IH, Lau J, Lichtenstein AH, Balk EM (2007) Heterogeneity and lack of good quality studies limit association between folate, vitamins B-6 and B-12, and cognitive function. J Nutr 137:1789–1794

    CAS  PubMed  Google Scholar 

  • Rispoli V, Simioni V, Capone JG, Golfre AN, Preda F, Sette E, Tugnoli V, Sensi M (2017) Peripheral neuropathy in 30 duodopa patients with vitamins B supplementation. Acta Neurol Scand 136:660–667

    CAS  PubMed  Google Scholar 

  • Romagnolo A, Merola A, Artusi CA, Rizzone MG, Zibetti M, Lopiano L (2019) Levodopa-induced neuropathy: a systematic review. Mov Disord Clin Pract 6(2):96–103. https://doi.org/10.1002/mdc3.12688

    Article  PubMed  Google Scholar 

  • Sahu P, Thippeswamy H, Chaturvedi SK (2022) Neuropsychiatric manifestations in vitamin B12 deficiency. Vitam Horm 119:457–470

    CAS  PubMed  Google Scholar 

  • Sampedro F, Martinez-Horta S, Horta-Barba A, Grothe MJ, Labrador-Espinosa MA, Jesus S, Rmes-Gomez A, Carrillo F, Puig-Davi A, Lora FR, Barbera MA, Pastor P, Arroyo SE, Vila BS, Foraster AC, Martinez JR, Padilla FC, Morlans MP, Aramburu IG, Ceberio JI, Vara JH, de Fabregues-Boixar O, de Deus FT, Avila A, Martinez-Castrillo JC, Bejr-Kasem H, Campolongo A, Pascual-Sedano B, Martinez-Martin P, Santos-Garcia D, Mir P, Kulisevsky J (2022) Increased homocysteine levels correlate with cortical structural damage in Parkinson’s disease. J Neurol Sci 434:120148

    CAS  PubMed  Google Scholar 

  • Santos GD, Martinez Castrillo JC, Puente PV, Seoane UA, Fernandez DS, Benita LV, Udaeta BB, Campolongo PA, Mariscal PN (2016) Clinical management of patients with advanced Parkinson’s disease treated with continuous intestinal infusion of levodopa/carbidopa. Neurodegener Dis Manag 6:187–202

    Google Scholar 

  • Santos-Garcia D, de Deus FT, Cores BC, Iniguez Alvarado MC, Feal Panceiras MJ, Suarez CE, Canfield H, Martinez MC, Jesus S, Aguilar M, Pastor P, Planellas L, Cosgaya M, Garcia CJ, Caballol N, Legarda I, Hernandez VJ, Cabo I, Lopez ML, Gonzalez AI, Vila Rivera MA, Gomez MV, Nogueira V, Puente V, Dotor Garcia-Soto J, Borrue C, Solano VB, Alvarez SM, Vela L, Escalante S, Cubo E, Carrillo PF, Martinez Castrillo JC, Sanchez AP, Onso Losada MG, Ariztegui NL, Gaston I, Kulisevsky J, Blazquez EM, Seijo M, Martinez JR, Valero C, Kurtis M, De FO, Gonzalez AJ, Alonso RR, Ordas C, Lopez DiazL LM, McAfee D, Martinez-Martin P, Mir P (2022) Predictors of the change in burden, strain, mood, and quality of life among caregivers of Parkinson’s disease patients. Int J Geriatr Psychiatry 37:1

    Google Scholar 

  • Schroecksnadel K, Leblhuber F, Fuchs D (2004) Effect of L-dopa on plasma homocysteine in PD patients: relationship to B-vitamin status. Neurology 62:676–677

    PubMed  Google Scholar 

  • Shen L (2015) Associations between B vitamins and Parkinson’s disease. Nutrients 7:7197–7208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silla Y, Varshney S, Ray A, Basak T, Zinellu A, Sabareesh V, Carru C, Sengupta S (2019) Hydrolysis of homocysteine thiolactone results in the formation of protein-cys-S-S-homocysteinylation. Proteins 87(8):625–634. https://doi.org/10.1002/prot.25681

    Article  CAS  PubMed  Google Scholar 

  • Skodda S, Muller T (2013) Refractory epileptic seizures due to vitamin B6 deficiency in a patient with Parkinson’s disease under duodopa(R) therapy. J Neural Transm (vienna) 120(2):315–318. https://doi.org/10.1007/s00702-012-0856-1

    Article  PubMed  Google Scholar 

  • Skovierova H, Vidomanova E, Mahmood S, Sopkova J, Drgova A, Cervenova T, Halasova E, Lehotsky J (2016) The molecular and cellular effect of homocysteine metabolism imbalance on human health. Int J Mol Sci. https://doi.org/10.3390/ijms17101733

    Article  PubMed  PubMed Central  Google Scholar 

  • Song IU, Kim JS, Park IS, Kim YD, Cho HJ, Chung SW, Lee KS (2013) Clinical significance of homocysteine (hcy) on dementia in Parkinson’s disease (PD). Arch Gerontol Geriatr 57:288–291

    CAS  PubMed  Google Scholar 

  • Taher J, Naranian T, Poon YY, Merola A, Mestre T, Suchowersky O, Kulasingam V, Fasano A (2022) Vitamins and infusion of levodopa–carbidopa intestinal gel. Can J Neurol Sci 49:19–28

    PubMed  Google Scholar 

  • Takeuchi H, Kawashima R (2022) A prospective study on the relationship between iron supplement intake, hemoglobin concentration, and risk of Parkinsonism. Nutrients 14:1

    Google Scholar 

  • Tchantchou F (2006) Homocysteine metabolism and various consequences of folate deficiency. J Alzheimers Dis 9:421–427

    CAS  PubMed  Google Scholar 

  • Toth C, Brown MS, Furtado S, Suchowersky O, Zochodne D (2008) Neuropathy as a potential complication of levodopa use in Parkinson’s disease. Mov Disord 23(13):1850–1859. https://doi.org/10.1002/mds.22137

    Article  PubMed  Google Scholar 

  • Toth C, Breithaupt K, Ge S, Duan Y, Terris JM, Thiessen A, Wiebe S, Zochodne DW, Suchowersky O (2010) Levodopa, methylmalonic acid, and neuropathy in idiopathic Parkinson disease. Ann Neurol 68:28–36

    CAS  PubMed  Google Scholar 

  • Ueland PM, Refsum H, Stabler SP, Malinow MR, Andersson A, Allen RH (1993) Total homocysteine in plasma or serum: methods and clinical applications. Clin Chem 39(9):1764–1779

    CAS  PubMed  Google Scholar 

  • Ulrey CL, Liu L, Andrews LG, Tollefsbol TO (2005) The impact of metabolism on DNA methylation. Hum Mol Genet 14 Spec No 1: R139-R147

  • Valkovic P, Benetin J, Blazicek P, Valkovicova L, Gmitterova K, Kukumberg P (2005) Reduced plasma homocysteine levels in levodopa/entacapone treated Parkinson patients. Parkinsonism Relat Disord 11:253–256

    PubMed  Google Scholar 

  • Vikdahl M, Domellof ME, Forsgren L, Haglin L (2015) Olfactory function, eating ability, and visceral obesity associated with MMSE three years after Parkinson’s disease diagnosis. J Nutr Health Aging 19:894–900

    CAS  PubMed  Google Scholar 

  • Weintraub D, Irwin D (2022) Diagnosis and treatment of cognitive and neuropsychiatric symptoms in Parkinson disease and dementia with lewy bodies. Continuum (minneap Minn) 28:1314–1332

    PubMed  Google Scholar 

  • Zesiewicz TA, Wecker L, Sullivan KL, Merlin LR, Hauser RA (2006) The controversy concerning plasma homocysteine in Parkinson disease patients treated with levodopa alone or with entacapone: effects of vitamin status. Clin Neuropharmacol 29:106–111

    CAS  PubMed  Google Scholar 

  • Zhang L, Yan J, Xu Y, Long L, Zhu C, Chen X, Jiang Y, Yang L, Bian L, Wang Q (2011) The combination of homocysteine and C-reactive protein predicts the outcomes of Chinese patients with Parkinson’s disease and vascular parkinsonism. PLoS ONE 6:e19333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong M, Zhu S, Gu R, Wang Y, Jiang Y, Bai Y, Jiang X, Shen B, Yan J, Pan Y, Zhu J, Zhang L (2022) Elevation of plasma homocysteine and minor hallucinations in Parkinson’s disease: a cross-sectional study. Behav Neurol 2022:4797861

    PubMed  PubMed Central  Google Scholar 

  • Zoccolella S, Lamberti P, Armenise E, De MM, Lamberti SV, Mastronardi R, Fraddosio A, Iliceto G, Livrea P (2005a) Plasma homocysteine levels in Parkinson’s disease: role of antiparkinsonian medications. Parkinsonism Relat Disord 11:131–133

    CAS  PubMed  Google Scholar 

  • Zoccolella S, Lamberti P, Iliceto G, Diroma C, Armenise E, Defazio G, Lamberti SV, Fraddosio A, De MM, Livrea P (2005b) Plasma homocysteine levels in L-dopa-treated Parkinson’s disease patients with cognitive dysfunctions. Clin Chem Lab Med 43:1107–1110

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

No funding are provided for this work.

Author information

Authors and Affiliations

Authors

Contributions

OP: conception for the article, performing literature search and data analysis, and writing of the first draft manuscript. RB: conception and organisation for the article, performing literature search and data analysis, and critique and writing of the revised draft manuscript. PG-R: conception and organisation for the article, review, and critique of the manuscript. WJ: conception and organisation for the article, review, and critique the manuscript. PO: conception and organisation for the article, review, and critique the manuscript. PR: conception and organisation for the article, review, and critique the manuscript. TM: conception and organisation for the article, review, and critique and writing of the revised draft manuscript.

Corresponding author

Correspondence to Roongroj Bhidayasiri.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest to declare.

Consent to participate

This study does not be required consent to participate due to its nature of being a review article.

Consent to publish

This study does not require consent to publish due to its nature of being review article.

Data and/or code availability

Not applicable.

Ethics approval

This study does not be required traditional ethical approval or follow the ethical guidelines due to its nature of being a review article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phokaewvarangkul, O., Bhidayasiri, R., Garcia-Ruiz, P. et al. Homocysteine, vitamin B metabolites, dopamine-substituting compounds, and symptomatology in Parkinson’s disease: clinical and therapeutic considerations. J Neural Transm 130, 1451–1462 (2023). https://doi.org/10.1007/s00702-023-02684-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-023-02684-9

Keywords

Navigation