Skip to main content

Advertisement

Log in

Type A and B monoamine oxidases distinctly modulate signal transduction pathway and gene expression to regulate brain function and survival of neurons

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Type A and B monoamine oxidases (MAO-A, -B) mediate and modulate intracellular signal pathways for survival or death of neuronal cells. MAO-A is associated with development of neuronal architecture, synaptic activity, and onset of psychiatric disorders, including depression, and antisocial aggressive impulsive behaviors. MAO-B produces hydrogen peroxide and plays a vital role in neuronal loss of neurodegenerative disorders, such as Parkinson’s and Alzheimer’s diseases. This review presents a novel role of MAO-A and B, their substrates and inhibitors, and hydrogen peroxide in brain function and neuronal survival and death. MAO-A activity is regulated not only by genetic factor, but also by environmental factors, including stress, hormonal deregulation, and food factors. MAO-A activity fluctuates by genetic–environmental factors, modulates the neuronal response to the stimuli, and affects behavior and emotional activities. MAO-B inhibitors selegiline and rasagiline protect neurons via increase expression of anti-apoptotic Bcl-2 and pro-survival neurotrophic factors in human neuroblastoma SH-SY5Y and glioblastoma U118MG cell lines. MAO-A knockdown suppressed the rasagiline-induced gene expression in SH-SY5Y cells, whereas MAO-B silencing enhanced the basal- and selegiline-induced gene expression in U118MG cells. MAO-A and B were shown to function as a mediator or repressor of gene expression, respectively. Further study on cellular mechanism underlying regulation of signal pathways by MAO-A and B may bring us a new insight on the role of MAOs in decision of neuronal fate and the development of novel therapeutic strategy may be expected for neuropsychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ERK:

Extracellular signal-regulated protein kinase

ETC:

Electron transfer chain

KLF:

Krüppel-like factor

MAO-A and MAO-B:

Type A and B monoamine oxidase

mao-A and mao-B KD, KO:

MAO-A and MAO-B knockdown, knockout

NHLH2:

Nescient helix-loop-helix 2

NTF:

Neurotrophic factor

PI3K:

Phosphatidylinisitol-3 kinase

siMao-A, siMao-B, siNS :

siRNA against mao-A and mao-B, and non-specific

Sp1:

Specificity protein 1

References

  • Akao Y, Maruyama W, Yi H, Shamoto-Nagai M, Youdim MB, Naoi M (2002) An anti-Parkinson’s disease drug, N-propargyl-1(R)-aminoindan (rasagiline) enhances expression of antiapoptotic bcl-2 in human dopaminergic SH-SY5Y cells. Neurosci Lett 326(2):105–108

    CAS  PubMed  Google Scholar 

  • Alemany R, Olmos G, Garcia-Sevilla JA (1995) The effects of phenelzine and other monoamine oxidase inhibitor anti-depressants on brain and liver I2 imidazoline-preferring receptors. Br J Pharmacol 114(4):837–845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badinter F, Amit T, Bar-Am O, Youdim BH, Weinreb O (2015) Beneficial behavioral, neurochemical and molecular effects of 1-(R)-aminoindan in aged mice. Neuropharmacology 99:264–272

    CAS  PubMed  Google Scholar 

  • Balciuniene J, Emiilsson L, Oreland L, Pettersson U, Jazin E (2002) Investigation of the functional effect of monoamine oxidase polymorphisms in human brain. Hum Genet 110(1):1–7

    CAS  PubMed  Google Scholar 

  • Barac YD, Bar-Am O, Liani E, Amit T, Frolov L, Ovcharenko W, Angel O, Youdim MBH, Binah O (2012) I1 imidazoline receptor: novel potential cytoprotective target of TV1022, the S-enantiomer of rasagiline. PLoS ONE 7(11):e47890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-Am O, Amit T, Youdim MB, Weinreb O (2016) Neuroprotective and neurorestorative potential of propargylamine derivatives in ageing: focus on mitochondrial targets. J Neural Transm 123(2):125–135

    CAS  PubMed  Google Scholar 

  • Bartl J, Müler T, Grünblatt E, Gerlach M, Riederer P (2014) Chronic monoamine oxidase-B inhibitor treatment blocks monoamine oxidase-A enzyme activity. J Neural Transm 121(4):379–383

    CAS  PubMed  Google Scholar 

  • Buckholtz JW, Mayer-Lindenberg A (2008) MAOA and the neurogenic architecture of human aggression. Trends Neurosci 31(3):120–129

    CAS  PubMed  Google Scholar 

  • Byrd AL, Manuck SB (2014) MAOA, childhood maltreatment, and antisocial behavior: meta-analysis of a gene–environmental interaction. Biol Psychiatry 75(1):9–17

    CAS  PubMed  Google Scholar 

  • Cao X, Wei Z, Gabriel GG, Li XM, Mousseau DD (2007) Calcium-sensitive regulation of monoamine oxidase-A contributes to the production of peroxyradicals in hippocampal cultures: implications for Alzheimer disease-related pathology. BMC Neurosci 8:73

    PubMed  PubMed Central  Google Scholar 

  • Cao X, Rui L, Pennington PR et al (2009) Serine 209 resides with a putative p38(MAPK) consensus motif and regulates monoamine oxidase-A activity. J Neurochem 111(1):101–110

    CAS  PubMed  Google Scholar 

  • Catarzi S, Biagioni C, Favilli F, Marcucci T, Iantomasi T, Vincenzini MT (2005) Redox regulation of platelet-derived-growth-factor-receptor: role of NADPH-oxidase and c-Src tyrosine kinase. Biochim Biophys Acta 1745:166–175

    CAS  PubMed  Google Scholar 

  • Chaudhuri AD, Yelamanchili SV, Fox HS (2013) MicroRNA-142 reduces monoamine oxidase A expression and activity in neuronal cells by downregulating SIRT1. PLoS ONE 8(1):e79579

    CAS  PubMed  Google Scholar 

  • Checknita D, Maussion G, Labonte B et al (2015) Monoamine oxidase A gene promoter methylation and transcriptional downregulation in an offender population with antisocial personality disorder. Br J Psychiatry 206(3):216–222

    CAS  PubMed  Google Scholar 

  • Chen J, Zhou Y, Müler-Steiner S et al (2005) SIRT1 protects against microglia- dependent amyloid-β toxicity through inhibiting NF-κB signaling. J Biol Chem 280(48):40364–40374

    CAS  PubMed  Google Scholar 

  • Chen PS, Peng GS, Li G et al (2006) Valproate protects dopaminergic neurons in midbrain neuron/glia culture by stimulating the release of neurotrophic factors from astrocytes. Mol Psychiatry 11(12):1116–1125

    CAS  PubMed  Google Scholar 

  • Chen MJ, Nguyen TV, Pike CJ, Rosso-Neustadt AA (2007) Norepinephrine induces BDNF and activates the PI-3K and MAPK cascades in embryonic hippocampal neurons. Cell Signal 19(1):114–128

    CAS  PubMed  Google Scholar 

  • Chen K, Ou XM, Wu JB, Shih JC (2011) Transcription factor E2F-associated phosphoprotein (EAPP), RAM2/CDCA7L/JPO2 (R1), and Simian virus 40 promoter factor 1 (Sp1) cooperatively regulate glucocorticoid activation of monoamine oxidase B. Mol Pharmacol 79(2):308–317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhang J, Zhang L, Shen Y, Xu Q (2012) Effects of MAOA promoter methylation on susceptibility to paranoid schizophrenia. Hum Genet 131(7):1081–1087

    CAS  PubMed  Google Scholar 

  • Costa-Mallen P, Kelada SN, Costa LG, Checkoway H (2005) Characterization of the in vitro transcriptional activity of polymorphic allele of the human monoamine oxidase-B gene. Neurosci Lett 283(1–2):171–175

    Google Scholar 

  • Costantini P, Chernyak BV, Petronilli V, Bernardi P (1996) Modulation of the mitochondrial permeability transition pore by pyrimidine nucleotides and dithiol oxidation at two separate sites. J Biol Chem 271(12):6746–6751

    CAS  PubMed  Google Scholar 

  • De Zutter GS, Davis RJ (2001) Pro-apoptotic gene expression mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Proc Natl Acad Sci USA 98(11):6168–6173

    PubMed  PubMed Central  Google Scholar 

  • Dlugos AM, Palmer AA, de Wit H (2009) Negative emotionality: monoamine oxidase B gene variants modulate personality traits in healthy humans. J Neural Transm 116(10):1323–1334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dolle F, Valette H, Bramoulle Y et al (2003) Synthesis and in vivo imaging properties of [11C]befloxatone: a novel highly potent position emission tomography ligand for mono-amine oxidase-A. Bioorg Med Chem 13(10):1771–1775

    CAS  Google Scholar 

  • Domschke K, Tidow N, Kuithan H et al (2012) Monoamine oxidase A gene DNA hypomethylation—a risk factor for panic disorder? Int J Neuropychopharmacol 15(9):1217–1228

    CAS  Google Scholar 

  • Ducci F, Enoch MA, Hodgkinson C, Xu K, Catena M, Robin RW, Goldman D (2008) Interaction between a functional MAOA locus and childhood sexual abuse predicts alcoholism and antisocial personal disorder in adult women. Mol Psychiatry 13(3):334–347

    CAS  PubMed  Google Scholar 

  • Duncan JW, Zhang X, Wang N et al (2016) Binge ethanol exposure the Krüppel-like factor 11-monoamine oxidase (MAO) pathway in rats: examining the use of MAO inhibitors to prevent ethanol-induced brain injury. Neuropharmacology 105:329–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Egashira T, Sakai K, Sakurai M, Takayama F (2003) Calcium disodium edetate enhances type A monoamine oxidase activity in monkey brain. Biol Trace Elem Res 94(3):203–211

    CAS  PubMed  Google Scholar 

  • Ekblom J, Oreland L, Chen K, Shih JC (1998) Is there a “non-MAO” macromolecular target for l-deprenyl?: Studies on MAOB mutant mice. Life Sci 63(12):PL161–PL186

    Google Scholar 

  • Erjavec GN, Sviglin KN, Perkovic MN, Muck-Seler D, Jovanovic T, Pivac N (2014) Association of gene polymorphisms encoding dopaminergic system components and platelet MAO-B activity with alcohol dependence and alcohol dependence-related phenotypes. Prog Neuropsychopharmacol Biol Psychiatry 54:321–327

    Google Scholar 

  • Fergusson DM, Boden JM, Honwood LJ, Miller AL, Kennedy MA (2011) MAOA, abuse exposure and antisocial behaviour: 30-year longitudinal study. Br J Psychiatry 198(6):457–463

    PubMed  PubMed Central  Google Scholar 

  • Finberg JPM, Rabey JM (2016) Inhibitors of MAO-A and MAO-B in psychiatry and neurology. Front Pharmacol 7:340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald JC, Ufer C, De Girolamo LA, Kuhn H, Billett EE (2007) Monoamine oxidase-A modulates apoptosis cell death induced by staurosporine in human neuroblastoma cells. J Neurochem 103(6):2189–2199

    CAS  PubMed  Google Scholar 

  • Fitzgerald KC, Ugun-Klusek A, Allen G, De Girolamo LA, Hargreaves I, Ufer C, Abramov AY, Billett WW (2014) Monoamine oxidase-A knockdown in human neuroblastoma cells reveals protection against mitochondrial toxins. FASEB J 28(1):218–229

    CAS  PubMed  Google Scholar 

  • Fonseca CP, Gama S, Saavedra A, Baltazar G (2014) H2O2- or l-DOPA-injured dopaminergic neurons trigger the release of double mediators that up-regulate striatal GDNF through different signaling pathways. Biochim Biophys Acta 1842(7):927–934

    CAS  PubMed  Google Scholar 

  • Fowler JS, Volkow ND, Wang GJ, Logan J, Pappas N, Shea C, MacGregor R (1997) Age-related increases in brain monoamine oxidase B in living healthy human subjects. Neurobiol Aging 18(4):431–435

    CAS  PubMed  Google Scholar 

  • Fowler JS, Logan J, Volkow ND, Wang GJ (2005) Translational neuroimaging: positron emission tomography studies of monoamine oxidase. Mol Imaging Biol 7:377–387

    PubMed  Google Scholar 

  • Fowler JS, Alia-Klein N, Kriplani A et al (2007) Evidence that brain MAO A activity does not correspond to MAO genotype in healthy male subjects. Biol Psychiatry 62(4):355–358

    CAS  PubMed  Google Scholar 

  • Fowler JS, Logan J, Volkow ND et al (2015) Evidence that formulation of the elective MAO-B inhibitor, selegiline, which bypass first-pass metabolism, also inhibit MAO-A in the human brain. Neuropharmacology 40(3):650–657

    CAS  Google Scholar 

  • Freedman NMT, Mishani E, Krausz Y, Weininger J, Lester H, Blaugrund E, Ehrlich D, Chisin R (2005) In vivo measurement of rain monoamine oxidase B occupancy by rasagiline, using 11C-l-deprenyl and PET. J Nucl Med 46(10):1618–1624

    CAS  PubMed  Google Scholar 

  • Gan L, Johnson JA (2014) Oxidative damage and the Nrf2–ARE pathway in neurodegenerative disorders. Biochim Biophys Acta 1842(8):1208–1218

    CAS  PubMed  Google Scholar 

  • Gasso P, Bernardo M, Mas S, Crescenti A, Garcia C, Parellada E, Lafuente A (2008) Association of A/G polymorphism in intron 13 of the monoamine oxidase B gene with schizophrenia in a Spanish population. Neuropsychobiology 58(2):65–70

    CAS  PubMed  Google Scholar 

  • Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol 8(9):722–728

    CAS  PubMed  Google Scholar 

  • Glover V, Sandler M, Owen F, Riley GJ (1977) Dopamine is a monoamine oxidase B substrate in man. Nature 265(5589):80–81

    CAS  PubMed  Google Scholar 

  • Godar SC, Fite PJ, McFarlin KM, Bortolato M (2016) The role of monoamine oxidase A in aggression: current translational developments and future challenges. Prog Neuropsychopharmacol Biol Psychiatry 69:90–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Götz ME, Fischer P, Gsell W, Riederer P, Streifler M, Simanyi M, Müller F, Danielczyk W (1998) Platelet monoamine oxidase B activity in dementia. A 4-year follow-up. Dement Geriatr Cogn Disord 9(2):74–77

    PubMed  Google Scholar 

  • Grimsby J, Chen K, Wang LJ, Lan NC, Shih JC (1991) Human monoamine oxidase A and B genes exhibit identical exon-intron organization. Proc Natl Acad Sci USA 88(9):3637–3641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grunewald M, Johnson S, Lu D et al (2012) Mechanistic role of a novel gluocorticoid-KLF11 (TIEG2) protein pathway in stress-induced monoamine oxidase A expression. J Biol Chem 287(29):24195–24206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gulyas B, Pavlova E, Kasa P et al (2011) Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-l-deprenyl using whole hemisphere autoradiography. Neurochem Int 58(1):60–68

    CAS  PubMed  Google Scholar 

  • Gyarfas T, Knuuttila J, Lindholm P, Rantamäki T, Castren E (2010) Regulation of brain-derived neurotrophic factor (BDNF) and cerebral dopamine neurotrophic factor (CDNF) by anti-parkinsonian drug therapy in vivo. Cell Mol Neurobiol 30(3):361–369

    CAS  PubMed  Google Scholar 

  • Halliday GM, Stevens CH (2011) Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord 26(1):6–17

    PubMed  Google Scholar 

  • Haneka MT, Rodriguez JJ, Verkharatsky A (2010) Neuroglia in neurodegeneration. Br Res Rev 63(1–2):189–211

    Google Scholar 

  • Harris S, Johnson S, Duncan JW et al (2015) Evidence revealing deregulation of the KLF11–MAO A pathway in association with chronic stress and depressive disorders. Neuropsychopharmacology 40:1373–1382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hauptman N, Grmsby J, Shi JC, Cadenas E (1996) The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA. Arch Biochem Biophys 335(2):295–304

    Google Scholar 

  • Heikkila RE, Manzino L, Cabbat FS, Duvoisin RC (1984) Protection against the dopaminergic neurotoxicity of 1-methyl-1,2,3,6-tetrahydropyridine (MPTP) by monoamine inhibitors. Nature 311(5985):467–469

    CAS  PubMed  Google Scholar 

  • Hisaoka K, Nishida A, Takebayashi M, Koda T, Yamawaki S, Nakata Y (2004) Serotonin increases glial cell line-derived neurotrophic factor release in rat C6 glioblastoma cells. Br Res 1002:167–170

    CAS  Google Scholar 

  • Hisaoka K, Maeda N, Tsuchioka M, Takebayashi M (2008) Antidepressants induce acute CREB phosphorylation and CRE-mediated gene expression in glial cells: a possible contribution to GDNF production. Br Res 1196:53–58

    CAS  Google Scholar 

  • Holschneider DP, Scremin QU, Huynh L, Chen K, Shih JC (1999a) Lack of protection from ischemic injury of monoamine oxidase B-deficient mice following middle cerebral artery occlusion. Neurosci Lett 259(3):161–164

    CAS  PubMed  Google Scholar 

  • Holschneider DP, Scremin QU, Chen K, Shih JC (1999b) Lack of protection of monoamine oxidase B-deficient mice from age-related spatial learning deficits in the Morris water maze. Life Sci 65(17):1757–1763

    CAS  PubMed  Google Scholar 

  • Holschneider DP, Chen K, Shi JC (2001) Biochemical, behavioral, physiologic, and neurodevelopmental changes in mice deficient in monoamine oxidase A or B. Brain Res Bull 56(5):453–462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holt A, Berry MD, Boulton AA (2004) On the binding of monoamine oxidase inhibitors to some sites distinct from the MAO active site, and effects thereby elicited. Neurotoxicology 25(1–2):251–266

    CAS  PubMed  Google Scholar 

  • Huang Y, Cate SP, Battistuzz C, Oquendo MA, Brent D, Man JJ (2004) An association between a functional polymorphism in the monoamine oxidase A gene promoter, impulsive traits and early abuse experiences. Neuropsychopharmacology 29(8):1498–1505

    CAS  PubMed  Google Scholar 

  • Inaba-Hasegawa K, Akao Y, Maruyama W, Naoi M (2012) Type A monoamine oxidase is associated with induction of neuroprotective Bcl-2 by rasagiline, an inhibitor of type B monoamine oxidase. J Neural Transm 119(4):405–414

    CAS  PubMed  Google Scholar 

  • Inaba-Hasegawa K, Akao Y, Maruyama W, Naoi M (2013) Rasagiline and selegiline, inhibitors of type B monoamine oxidase, induce type A monoamine oxidase in human SH-SY5Y cells. J Neural Transm 120(3):435–444

    CAS  PubMed  Google Scholar 

  • Inaba-Hasegawa K, Shamoto-Nagai M, Maruyama W, Naoi M (2017a) Type B and A monoamine oxidase and their inhibitors regulate the gene expression of Bcl-2 and neurotrophic factors in human glioblastoma U118MG cells: different signal pathways for neuroprotection by selegiline and rasagiline. J Neural Transm 124(9):1055–1066

    CAS  PubMed  Google Scholar 

  • Inaba-Hasegawa K, Shamoto-Nagai M, Maruyama W, Naoi M (2017b) Phytochemicals induce genes coding Bcl-2 and neurotrophic factors in human glioblastoma U118MG cells: suppression by type B monoamine oxidase (in preparation)

  • Ivy AS, Rodriguez FG, Garcia C, Chen MJ, Russo-Neustadt AA (2003) Noradrenergic and serotonergic blockage inhibits BDNF mRNA activation following exercise and antidepressant. Pharmacol Biochem Behav 75(1):81–88

    CAS  PubMed  Google Scholar 

  • Jakubauskiene E, Janaviciute V, Peciuliene I, Söderkvist P, Kanopka A (2012) G/A polymorphism in intronic sequence affects the processing of MAO-B in patients with Parkinson disease. FEBS Lett 586(20):3698–3704

    CAS  PubMed  Google Scholar 

  • Jiang H, Jiang Q, Liu W, Feng J (2006) Parkin suppresses the expression of monoamine oxidases. J Biol Chem 281(13):8591–8599

    CAS  PubMed  Google Scholar 

  • Johnson S, Stockmeyer CA, Meyer JH et al (2011) The reduction of R1, a novel repressor protein for monoamine oxidase A, in major depressive disorder. Neuropsychopharmacology 36(10):2139–2148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Juric DM, Miklic S, Carman-Krzan M (2006) Monoaminergic neuronal activity up-regulates BDNF synthesis in cultured neonatal rat astrocytes. Brain Res 1108:54–62

    CAS  PubMed  Google Scholar 

  • Juric DM, Loncar D, Carman-Lrzan M (2008) Noradrenergic stimulation of BDNF synthesis in astrocytes: mediation via α1- and β1/β2-adrenergic receptors. Neurochem Int 52(1–2):297–306

    CAS  PubMed  Google Scholar 

  • Kabayama M, Swkoori K, Yamada K, Ornthanalai VG, Ota M, Morimura N, Katayama K, Murphy NP, Aruga J (2013) Rines E3 ubiquitin ligase regulates MAO-A levels and emotional responses. J Neurosci 33(32):12940–12953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang SJ, Scott WK, Li YJ et al (2006) Family-based case-control study of MAOA and MAOB polymorphisms in Parkinson disease. Mov Dis 21(12):2175–2180

    Google Scholar 

  • Kersemans K, Laeken NV, de Vos F (2013) Padiochemistry devoted to the production monoamine oxidase (MAO-A and MAO-B) ligands for brain imaging with positron emission tomography. Label Compd Radiopharm 56(3–4):78–88

    CAS  Google Scholar 

  • Kim D, Nguyen MD, Dobbin MM et al (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 26(13):3169–3179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kinor N, Geffen R, Golomb E, Zinman T, Yadid G (2001) Dopamine increases glial cell line-derived neurotrophic factor in human fetal astrocytes. Glia 33(2):143–150

    CAS  PubMed  Google Scholar 

  • Klegeris A, McGeer PL (2000) R-(−)-Deprenyl inhibits monocytic THP-1 cell neurotoxicity independently of monoamine oxidase inhibition. Exp Neurol 166(2):658–664

    Google Scholar 

  • Ledreux A, Boger HA, Hinson VK, Cantwell K, Granholm AC (2016) BDNF levels are increased by aminoindan and rasagiline in a double lesion model of Parkinson’s disease. Br Res 1631:34–45

    CAS  Google Scholar 

  • Leroy C, Bragulat V, Berlin I et al (2009) Cerebral monoamine oxidase A inhibition in tobacco smokers confirmed with PET and [11C]befloxatone. J Clin Psychopharmacol 29(1):86–88

    CAS  PubMed  Google Scholar 

  • Levant B, Morgan KA, Ahlgren-Beckendorf JA, Grandy DK, Chen K, Shih JC, Self I (2010) Modulation of [3H]quinopirole binding at striatal D2 dopamine receptor by a monoamine oxidaseA-like site: evidence from radioligand studies and D2-receptor- and MAO(A)-deficient mice. Life Sci 70(2):229–241

    Google Scholar 

  • Libert S, Pointer K, Bell EL et al (2011) SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell 147(7):1459–1472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CA, Chinta SJ, Rane A, Andersen JK (2013) Age-related behavioral phenotype of astrocytic monoamine oxidase-B transgenic mouse model of Parkinson’s disease. PLoS ONE 8(1):e54200

    Google Scholar 

  • Liu W, Rabinpvich A, Nash Y, Frenkel D, Wang Y, Youdim MBH, Weinreb O (2017) Anti-inflammatory and protective effects of MT-031, a novel multitarget MAO-A and AChE/BuChE inhibitor in scopolamine mouse model and inflammatory cells. Neuropharmacology 113(Pt A):445–456

    CAS  PubMed  Google Scholar 

  • Lu D, Johnson C, Johnson S, Tazil S, Ou XM (2008) The neuroprotective effect of antidepressant drug via inhibition of TIEG2–MAO B mediated cell death. Dug Disc Ther 2(5):289–295

    Google Scholar 

  • Ludwig B, Dwivedi Y (2016) Dissecting bipolar disorder complexity through epigenomic approach. Mol Psychiatry 21(11):1490–1498

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacInnes N, Handley SL (2002) Characterization of the discriminable stimulus produced by 2-BFI: effects of imidazoline I2-site ligands, MAOIs, β-carbolines, agmatine and ibogaine. Br J Pharm 135(5):1227–1234

    CAS  Google Scholar 

  • Mandel S, Sagi Y, Amit T (2007) Rasagiline promotes regeneration of substantia nigra dopaminergic neurons in post-MPTP-induced parkinsonism via activation of tyrosine kinase receptor signaling pathway. Neurochem Res 32(10):1694–1699

    CAS  PubMed  Google Scholar 

  • Manoli I, Le H, Alesci S, McFann KK, Su YA, Kino T, Chrousos GP, Blackman MR (2005) Monoamine oxidase-A is a major target for glucocorticoids in human skeletal muscle cells. FASEB J 19(10):1359–1361

    CAS  PubMed  Google Scholar 

  • Marcocci L, De March U, Salvi M, Nocera S, Agostinelli E, Mondovi B, Toninelllo A (2002) Tyramine and monoamine oxidase inhibitors as modulators of the mitochondrial membrane permeability transition. J Membr Biol 188(1):23–32

    CAS  PubMed  Google Scholar 

  • Marinho HS, Reak C, Cyrne L, Soares H, Antunes F (2014) Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2:535–562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192(1):1–15

    CAS  PubMed  Google Scholar 

  • Maruyama W, Naoi M (2013) “70th Birthday Professor Riederer” Induction of glial cell line-derived and brain-derived neurotrophic factors by rasagiline and (−)deprenyl: a way to a disease-modifying therapy? J Neural Transm 120(1):83–89

    CAS  PubMed  Google Scholar 

  • Maruyama W, Nitta A, Shamoto-Nagai M, Hirata Y, Akao Y, Youdim M, Furukawa S, Nabeshima T, Naoi M (2004) N-Propargyl-1-(R)-aminoindan, rasagiline, increases glial cell line-derived neurotrophic factor (GDNF) in neuroblastoma SH-SY5Y cells through activation of NF-κB transcription factor. Neurochem Int 44(6):293–400

    Google Scholar 

  • Maschauer S, Haller A, Riss PJ, Kuwert T, Prante O, Cumming P (2015) Specific binding of [18F]fluoroethyl-harmol to monoamine oxidase A in rat brain cytostat sections, and compartmental analysis of binding in living brain. J Neurochem 135(5):908–917

    CAS  PubMed  Google Scholar 

  • Mattson MP, Chan SL, Duan W (2002) Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev 82:637–672

    CAS  PubMed  Google Scholar 

  • Mattson MP, Maudsley S, Martin B (2004) BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci 27(10):588–594

    Google Scholar 

  • McCarthy D, Lueras P, Bhide P (2007) Elevated dopamine levels during gestation reduced region-specific decreases in neurogenesis and subtle deficits in neuronal numbers. Br Res 1182:11–25

    CAS  Google Scholar 

  • Melas PA, Forsell Y (2015) Hypomethylation of MAOA’s first exon region in depression: a replication study. Psychiatry Res 226(1):389–391

    CAS  PubMed  Google Scholar 

  • Mele T, Carman-Krzan M, Juric DM (2010) Regulatory role of monoamine transmitters in astrocytic NT-3 synthesis. Int J Dev Neurosci 28(1):13–19

    CAS  PubMed  Google Scholar 

  • Meyer JH, Ginovart N, Boovariwala A et al (2006) Elevated monoamine oxidase A levels in the brain. An explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry 63(11):1209–1216

    CAS  PubMed  Google Scholar 

  • Michan S, Li Y, Chou MMH et al (2010) SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 30(29):9695–9707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michel TM, Frangou S, Camara S, Thiemeyer D, Jecel J, Tatschner T, Zoechling R, Gruunblatt E (2008) Altered glial cell line-derived neurotrophic factor (GDNF) concentrations in the brain of patients with depressive disorder: a comprehensive post-mortem study. Eur Psychiatry 23(6):413–420

    PubMed  Google Scholar 

  • Miklic S, Juric DM, Caman-Krzan M (2004) Differences in the regulation of BDNF and NGF synthesis in cultured neonatal rat astrocytes. Int J Dev Neurosci 22(3):119–130

    CAS  PubMed  Google Scholar 

  • Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163(3):1450–1455

    CAS  PubMed  Google Scholar 

  • Mizuta I, Ohta M, Ohta K, Nishimura M, Mizuta E, Hayashi K, Kuno S (2000) Selegiline and desmethylselegiline stimulate NGF, BDNF, and GDNF synthesis in cultured mouse astrocytes. Biochem Biophys Res Commun 279(3):751–755

    CAS  PubMed  Google Scholar 

  • Mousseau DD, Baker GB (2012) Recent developments in the regulation of monoamine oxidase form and function: is the current model restricting our understanding of the breath of contribution of monoamine oxidase to brain dysfunction? Curr Topics Med Chem 12(20):2163–2176

    CAS  Google Scholar 

  • Nag S, Lehmann L, Kettschau G, Heinrich T, Thiele A, Varrone A, Gulyas B, Halldin C (2012) Synthesis and evaluation of [18F]fluororasagiline, a novel position emission tomography (PET) radioligand for monoamine oxidase B (MAO-B). Bioorg Med Chem 20(9):3065–3071

    CAS  PubMed  Google Scholar 

  • Nakamura S, Kawamata T, Akiguchi I, Kameyama M, Nakamura N, Kimura H (1990) Expression of monoamine oxidase B activity in astrocytes of senile plaques. Acta Neuropathol 80(4):419–425

    CAS  PubMed  Google Scholar 

  • Nakaso K, Nakamura C, Sato H, Imamura K, Takeshima T, Nakashima K (2006) Novel cytoprotective mechanism of anti-parkinsonian drug deprenyl: pIK3 and Nrf2-derived induction of antioxidant proteins. Biochim Biophys Res Acta 339(3):915–922

    CAS  Google Scholar 

  • Naoi M, Maruyama W, Inaba-Hasegawa K (2012) Type A and B monoamine oxidase in age-related neurodegenerative disorders: their distinct roles in neuronal death and survival. Curr Top Med Chem 12(20):2177–2188

    CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W, Inaba-Hasegawa K (2013) Revelation in the neuroprotective functions of rasagiline and selegiline: the induction of distinct genes by different mechanisms. Expert Rev Neurother 13(6):1233–1250

    Google Scholar 

  • Naoi M, Riederer P, Maruyama W (2016) Modulation of monoamine oxidase (MAO) expression in neuropsychiatric disorders: genetic and environmental factors involved in type A MAO expression. J Neural Transm 123(2):91–106

    CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W, Shamoto-Nagai M (2017a) Type A monoamine oxidase and serotonin are coordinately involved in depressive disorders: from neurotransmitter imbalance to impaired neurogenesis. J Neural Transm. https://doi.org/10.1007/s00702-017-1709-8

    Article  PubMed  Google Scholar 

  • Naoi M, Inaba-Hasegawa K, Shamoto-Nagai M, Maruyama W (2017b) Neurotrophic function of phytochemicals for neuroprotection in aging and neurodegenerative disorders: modulation of intracellular signaling and gene expression. J Neural Transm. https://doi.org/10.1007/s00702-1797-5

    Article  PubMed  Google Scholar 

  • Ohta K, Kuno S, Inoue S, Ikeda E, Fujinami A, Ohta M (2010) The effect of dopamine agonists: the expression of GDNF, NGF, and BDNF in cultured mouse astrocytes. J Neurol Sci 291(1–2):12–16

    CAS  PubMed  Google Scholar 

  • Ossola B, Schendzielorz N, Chen SH, Bird GS, Tuominen RK, Manniströ PT, Hong JS (2011) Amantadine protects dopamine neurons from a dual action: reducing activation of microglia and inducing expression of GDNF in astroglia. Neuropharmacology 61(4):574–582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ou XM, Chen K, Shih JC (2006a) Monoamine oxidase A and repressor R1 are involved in apoptotic signaling pathway. Proc Natl Acad Sci USA 103(29):10923–10928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ou XM, Chen K, Shih JC (2006b) Glucocorticoid and androgen activation of monoamine oxidase A is regulated by R1 and Sp1. J Biol Chem 281(30):21512–21525

    CAS  PubMed  Google Scholar 

  • Patel NJ, Chen MJ, Russo-Neustadt AA (2010) Norepinephrine and nitric oxide promote cell survival signaling in hippocampal neurons. Eur J Pharmacol 633(1–3):1–9

    CAS  PubMed  Google Scholar 

  • Pav M, Kovaru H, Fiserova A, Havrdova E, Lisa V (2008) Neurobiological aspects of depressive disorder and antidepressant treatment: role of glia. Physiol Res 57(2):151–164

    CAS  PubMed  Google Scholar 

  • Pennington PR, Wei Z, Rui L, Doing JA, Graham B, Kuski K, Gabriel GG, Mousseau DD (2011) Alzheimer disease-related presenilin-1 variants exert distinct effects on monoamine oxidase-A activity in vitro. J Neural Transm 118(7):987–995

    CAS  PubMed  Google Scholar 

  • Perkovic MN, Strac DS, Erjavec GN, Uzun S, Podobnik J, Kozumplik O, Vlatkovic S, Pivac N (2016) Monoamine oxidase and agitation in psychiatric patients. Prog Neuropsychopharmacol Biol Psychiatry 69:131–146

    Google Scholar 

  • Philibert RA, Gunter TD, Beach SRH, Brody GH, Madan A (2008) MAOA methylation is associated with nicotine and alcohol dependence in women. Am J Med Genet B Neuropsychiatr Genet 147B(5):565–570

    CAS  PubMed  Google Scholar 

  • Pizzinat N, Marchal-Victorion S, Maurel A, Ordener C, Bompart G, Parini A (2003) Substrate-dependent regulation of MAO-A in rat mesangial cells: involvement of dopamine D2-like receptors. Am J Physiol Renal Physiol 284(1):F167–F174

    CAS  PubMed  Google Scholar 

  • Rekkas PV, Wilson AA, Lee VWH et al (2014) Greater monoamine oxidase A binding in perimenopausal age as measured with carbon 11-labelled harmine position emission tomography. JAMA Psychiatry 71(8):873–879

    PubMed  PubMed Central  Google Scholar 

  • Ren Y, Jiang H, Ma D, Nakaso K, Feng J (2011) Parkin degrades estrogen-related receptors to limit the expression of monoamine oxidases. Hum Mol Genet 20(6):1074–1083

    CAS  PubMed  Google Scholar 

  • Riederer P, Laux G (2011) MAO-inhibitors in Parkinson’s disease. Exp Neurobiol 20(1):1–17

    PubMed  PubMed Central  Google Scholar 

  • Riederer P, Konradi C, Habenstreit G, Youdim MBH (1989) Neurochemical perspectives to the function of monoamine oxidase. Acta Neurol Scand 126(1):41–45

    CAS  Google Scholar 

  • Roth TL, Sweatt JD (2011) Annual research review: Epigenetic mechanisms and environmental shaping of the brain during sensitive periods of development. J Child Psychol Psychiatry 52(4):398–408

    PubMed  PubMed Central  Google Scholar 

  • Ryu H, Lee J, Zaman K, Kubilis J, Ross BD, Neve R, Ratan RR (2003) Sp1 and Sp3 are oxidative stress-inducible, antideath transcription factors in cortical neurons. J Neurosci 23(9):3597–3606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saavedra A, Baltazar G, Santos P, Carvalhp CM, Duarte EP (2006) Selective injury to dopaminergic neurons up-regulates GDNF in substantia nigra postnatal cell cultures: role of neuron-glia crosstalk. Neurobiol Dis 23(3):533–542

    CAS  PubMed  Google Scholar 

  • Sacher J, Wilson AA, Houle S, Rusjan P, Hassan S, Bloomfield PM, Stewart DE, Maeyer JH (2010) Elevated brain monoamine oxidase A binding in the early postpartum period. Arch Gen Psychiatry 67(5):468–474

    PubMed  Google Scholar 

  • Sacher J, Rabiner EA, Clark M et al (2012) Dynamic, adaptive changes in MAO-A binding after alterations in substrate availability: an in vivo [11C]-harmine position emission tomography study. J Cereb Blood Flow Metab 32(3):443–446

    CAS  PubMed  Google Scholar 

  • Sacher J, Rekkas PV, Wilson AA et al (2015) Relationship of monoamine oxidase-A distribution volume to postpartum depression and postpartum crying. Neuropsychopharmacology 40(2):427–435

    Google Scholar 

  • Samantaray S, Chandra G, Mohanakumar KP (2003) Calcium channel agonist, (±)-Bay K8644, causes a transient increase in striatal monoamine oxidase activity in Balb/c mice. Neurosci Lett 342(1–2):73–76

    CAS  PubMed  Google Scholar 

  • Saura J, Bleuel Z, Ulrich J et al (1996) Molecular neuroanatomy of human monoamine oxidases A and B revealed by quantitative enzyme radioautography and in situ hybridization histochemistry. Neuroscience 70(3):755–774

    CAS  PubMed  Google Scholar 

  • Schedin-Weiss S, Inoue M, Hromadkova L et al (2017) Monoamine oxidase B in elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimers Res Ther 9(1):57

    PubMed  PubMed Central  Google Scholar 

  • Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from genes to behavior. Annu Rev Neurosci 22:197–217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shih JC, Boyang J, Chen K (2011) Transcriptional regulation and multiple functions of MAO genes. J Neural Transm 118(7):979–986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shumay E, Logan J, Volkow ND, Fowler JS (2012) Evidence that the methylation state of the monoamine oxidase A (MAOA) gene predicts brain activity of MAOA enzyme in healthy men. Epigenetics 7(10):1151–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sies H (2014) Role of metabolic H2O2 generation, redox signaling and oxidative stress. J Biol Chem 289(13):8735–8741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sies H (2017) Hydrogen peroxide as central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol 11:613–619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sjöberg RL, Ducci F, Barr CS, Newman T, Dell’Osso L, Virkkunen M, Foldman D (2008) A non-additive interaction of a functional MAO-A VNTR and testosterone predicts antisocial behavior. Neuropsychopharmacology 33(2):425–430

    PubMed  Google Scholar 

  • Soliman A, Udemgba C, Fan I et al (2012) Convergent effects of acute stress and glucocorticoid exposure upon MAO-A in humans. J Neurosci 32(48):17120–17127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strac DS, Petrovic ZK, Perkovic MN, Molac D, Erjavec GN, Pivac N (2016) Platelet monoamine oxidase type B, MAOB intron 13 and MAOA-uVNTR polymorphism and symptoms of post-traumatic stress disorders. Stress 29(4):362–373

    Google Scholar 

  • Su C, Sun F, Cunningham RL, Rybalchenko N, Sigh M (2014) ERK5/KLF4 signaling as a common mediator of the neuroprotective effects of both nerve growth factor and hydrogen peroxide preconditioning. Age (Dordr) 36(4):9685

    Google Scholar 

  • Tatton WG, Chalmers-Redman RME, Ju WJ, Mammen M, Carlile GW, Pong AW, Tatton NA (2002) Propargylamines induce antiapoptotic new protein synthesis in serum- and nerve growth factor (NGF)-withdrawn, NGF-differentiated PC-12 cells. J Pharmacol Exp Ther 301(12):753–764

    CAS  PubMed  Google Scholar 

  • Truong TH, Carroll KS (2012) Redox regulation of epidermal growth factor receptor signaling through cysteine oxidation. Biochemistry 51(50):9954–9965

    CAS  PubMed  Google Scholar 

  • Tsuchioka M, Takebayashi M, Hisaoka K, Maeda N, Nakata Y (2008) Serotonin (5-HT) induces glial cell line-derived neurotrophic factor (GDNF) mRNA expression via the transactivation of fibroblast growth factor 2 (FGR2) in rat C6 glioma cells. J Neurochem 106(1):244–257

    CAS  PubMed  Google Scholar 

  • Udemgba C, Johnson S, Stockmeier CA et al (2014) The expression of KLF11(TIEG2), a monoamine oxidase B transcription activator in the prefrontal cortex of human alcohol dependence. Alcohol Clin Exp Res 38(1):144–151

    CAS  PubMed  Google Scholar 

  • Vaarmann A, Gandhi S, Abramov AY (2010) Dopamine induces Ca2+ signaling in astrocytes through reactive oxygen species generated by monoamine oxidase. J Biol Chem 85(32):25018–25023

    Google Scholar 

  • Valla J, Schneider L, Niedzielko T et al (2006) Impaired platelet mitochondrial activity in Alzheimer’s disease and mild cognitive impairment. Mitochondrion 6(6):323–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vina D, Serra S, Lamela M, Delogu G (2012) Herbal natural products as a source of monoamine oxidase inhibitors: a review. Curr Topics Ned Chem 12(20):2131–2144

    CAS  Google Scholar 

  • Wang CC, Borchert A, Ugun-Klusek A et al (2011) Monoamine oxidase A expression is vital for embryonic brain development by modulating developmental apoptosis. J Biol Chem 286(32):28322–28330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Z, Gabriel GG, Rui L, Cao X, Pennington PR, Chlan-Fourney J, Nazaralli A, Baker GB, Mousseau DD (2012a) Monoamine oxidase-A physically interacts with presenilin-1 (M146V) in the mouse cortex. J Alzheimer’s Dis 28(2):403–422

    CAS  Google Scholar 

  • Wei Z, Satram-Maharaj T, Chaharyn B, Kuski K, Pennington PR, Cao X, Chlan J, Mousseau DD (2012b) Aspartic acid substitution in monoamine oxidase-A reveal both catalytic-dependent and -independent influences on cell viability and proliferation. J Neural Transm 119(11):1285–1294

    CAS  PubMed  Google Scholar 

  • Weinreb O, Bar-Am O, Amit T, Chillag-Talmor O, Youdim MBH (2004) Neuroprotection via pro-survival protein kinase C isoforms associated with Bcl-2 family members. FASEB J 18(12):1471–1473

    CAS  PubMed  Google Scholar 

  • Weinreb O, Amit T, Bar-Am O, Youdim MB (2010) Rasagiline: a novel anti-Parkinsonian monoamine oxidase-B inhibitor with neuroprotective activity. Prog Neurobiol 92(3):330–344

    CAS  PubMed  Google Scholar 

  • Wong WK, Chen K, Shih JC (2001) Regulation of human monoamine oxidase B gene by Sp1 and Sp3. Mol Psychiatry 59(4):852–859

    CAS  Google Scholar 

  • Wong WK, Chen K, Shih JC (2002) Activation of human monoamine oxidase B gene expression by a protein kinase C MAP signal transduction pathway involves c-Jun and Egr-1. J Biol Chem 277(25):22222–22230

    CAS  PubMed  Google Scholar 

  • Wong WK, Ou XM, Chen K, Shih JC (2003) Decreased methylation and transcription repressor Sp3 up-regulated human monoamine oxidase (MAO) B expression during Caco-2 differentiation. J Biol Chem 278(38):36227–36235

    CAS  PubMed  Google Scholar 

  • Wu JB, Chen K, Ou XM, Shi JC (2009a) Retinoic acid activates monoamine oxidase-B promoter in human neuronal cells. J Biol Chem 284(25):16723–16735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu HM, Tzeng NS, Qian L et al (2009b) Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglia activation. Neuropsychopharmacology 34(10):2344–2357

    CAS  PubMed  Google Scholar 

  • Wu Y, Kazumura K, Maruyama W, Osawa T, Naoi M (2015) Rasagiline and selegiline suppress calcium efflux from mitochondria by PK11195-induced opening of mitochondrial permeability transition pore: a novel antiapoptotic function for neuroprotection. J Neural Transm 122(10):1399–1407

    CAS  PubMed  Google Scholar 

  • Yang CS, Fang M, Lambert JD, Yan P, Huang HM (2008) Reversal of hypomethylation and reactivation of genes by dietary polyphenolic compounds. Nutr Res 66(Suppl 1):S18–S20

    Google Scholar 

  • Yi H, Akao Y, Maruyama W, Chen K, Shih Naoi M (2006a) Type A monoamine oxidase is the target of an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, leading to apoptosis in SH-SY5Y cells. J Neurochem 96(2):541–549

    CAS  PubMed  Google Scholar 

  • Yi H, Maruyama W, Akao Y, Takahashi T, Iwasa K, Youdim MB, Naoi M (2006b) N-Propargylamine protects SH-SY5Y cells from apoptosis induced by an endogenous neurotoxin, N-methyl(R)salsolinol, through stabilization of mitochondrial membrane and induction of anti-apoptotic Bcl-2. J Neural Transm 113(1):21–32

    CAS  PubMed  Google Scholar 

  • Youdim MBH, Bakhle YS (2006) Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol 147(Suppl 1):S287–S296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Q, Teixeira CM, Mahadevia D, Huang Y, Balsam D, Mann JJ, Gingrich JA, Ansorge MS (2014) Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice. Mol Psychiatry 19(6):688–698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zellner M, Baureder M, Rappold E et al (2012) Comparative platelet proteome analysis reveals an increase of monoamine oxidase-B protein expression in Alzheimer’s disease but not in non-demented Parkinson’s disease patients. J Proteom 75(7):2080–2092

    CAS  Google Scholar 

  • Zhou G, Miura Y, Shoji H, Yamada S, Matsuishi T (2001) Platelet monoamine oxidase B and plasma β-phenylethanolamine in Parkinson’s disease. J Neurol Neurosurg Psychiatry 70(2):229–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler C, Richter J, Mahr M et al (2016) MAOA gene hypomethylation in panic disorder-reversibility of an epigenetic risk pattern by psychotherapy. Transl Psychiatry 6:e773

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Naoi.

Ethics declarations

Conflict of interest

The authors declare that there are no competing financial interests in relation to the work described.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naoi, M., Maruyama, W. & Shamoto-Nagai, M. Type A and B monoamine oxidases distinctly modulate signal transduction pathway and gene expression to regulate brain function and survival of neurons. J Neural Transm 125, 1635–1650 (2018). https://doi.org/10.1007/s00702-017-1832-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-017-1832-6

Keywords

Navigation