Skip to main content

Advertisement

Log in

Neuroinflammatory responses in Alzheimer’s disease

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Neuroinflammatory responses in Alzheimer’s disease (AD) are complex and not fully understood. They involve various cellular and molecular players and associate interaction between the central nervous system (CNS) and the periphery. Amyloid peptides within the senile plaques and abnormally phosphorylated tau in neurofibrillary tangles are able to initiate inflammatory responses, in brain of AD patients and in mouse models of this disease. The outcome of these responses on the pathophysiology of AD depends on several factors and can be either beneficial or detrimental. Thus, understanding the role of neuroinflammation in AD could help to develop safer and more efficient therapeutic strategies. This review discusses recent knowledge on microglia responses toward amyloid and tau pathology in AD, focusing on the role of Toll-like receptors and NOD-like receptor protein 3 (NLRP3) inflammasome activation in microglial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed Z, Cooper J, Murray TK, Garn K, McNaughton E, Clarke H, Parhizkar S, Ward MA, Cavallini A, Jackson S et al (2014) A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol (Berl) 127:667–683

    Article  CAS  Google Scholar 

  • Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T, Wolozin B, Butovsky O, Kügler S, Ikezu T (2015) Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 18:1584–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balducci C, Frasca A, Zotti M, La Vitola P, Mhillaj E, Grigoli E, Iacobellis M, Grandi F, Messa M, Colombo L et al (2017) Toll-like receptor 4-dependent glial cell activation mediates the impairment in memory establishment induced by β-amyloid oligomers in an acute mouse model of Alzheimer’s disease. Brain Behav Immun 60:188–197

    Article  CAS  PubMed  Google Scholar 

  • Baldwin AG, Brough D, Freeman S (2016) Inhibiting the inflammasome: a chemical perspective. J Med Chem 59:1691–1710

    Article  CAS  PubMed  Google Scholar 

  • Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K et al (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6:916–919

    Article  CAS  PubMed  Google Scholar 

  • Barton GM, Medzhitov R (2003) Toll-like receptor signaling pathways. Science 300:1524–1525

    Article  CAS  PubMed  Google Scholar 

  • Boche D, Donald J, Love S, Harris S, Neal JW, Holmes C, Nicoll JAR (2010) Reduction of aggregated Tau in neuronal processes but not in the cell bodies after Abeta42 immunisation in Alzheimer’s disease. Acta Neuropathol (Berl) 120:13–20

    Article  CAS  Google Scholar 

  • Breitner JCS, Haneuse SJPA, Walker R, Dublin S, Crane PK, Gray SL, Larson EB (2009) Risk of dementia and AD with prior exposure to NSAIDs in an elderly community-based cohort. Neurology 72:1899–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bu G (2009) Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 10:333–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coll RC, Robertson AAB, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, Vetter I, Dungan LS, Monks BG, Stutz A et al (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21:248–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan CM, Mudher A (2013) Are tau aggregates toxic or protective in tauopathies? Front Neurol 4:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Crack PJ, Bray PJ (2007) Toll-like receptors in the brain and their potential roles in neuropathology. Immunol Cell Biol 85:476–480

    Article  CAS  PubMed  Google Scholar 

  • Daniels MJD, Rivers-Auty J, Schilling T, Spencer NG, Watremez W, Fasolino V, Booth SJ, White CS, Baldwin AG, Freeman S et al (2016) Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models. Nat Commun 7:12504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Calignon A, Polydoro M, Suárez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA et al (2012) Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73:685–697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dinarello CA, Simon A, van der Meer JWM (2012) Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov 11:633–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doi Y, Mizuno T, Maki Y, Jin S, Mizoguchi H, Ikeyama M, Doi M, Michikawa M, Takeuchi H, Suzumura A (2009) Microglia activated with the toll-like receptor 9 ligand CpG attenuate oligomeric amyloid beta neurotoxicity in in vitro and in vivo models of Alzheimer’s disease. Am J Pathol 175:2121–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenbarth SC, Williams A, Colegio OR, Meng H, Strowig T, Rongvaux A, Henao-Mejia J, Thaiss CA, Joly S, Gonzalez DG et al (2012) NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells. Nature 484:510–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Khoury JB, Moore KJ, Means TK, Leung J, Terada K, Toft M, Freeman MW, Luster AD (2003) CD36 mediates the innate host response to beta-amyloid. J Exp Med 197:1657–1666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Etminan M, Gill S, Samii A (2003) Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer’s disease: systematic review and meta-analysis of observational studies. BMJ 327:128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Z, Aman Y, Ahmed I, Chetelat G, Landeau B, Ray Chaudhuri K, Brooks DJ, Edison P (2015) Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimer’s dement. J Alzheimer’s Assoc 11(608–621):e7

    Google Scholar 

  • Fassbender K, Walter S, Kühl S, Landmann R, Ishii K, Bertsch T, Stalder AK, Muehlhauser F, Liu Y, Ulmer AJ et al (2004) The LPS receptor (CD14) links innate immunity with Alzheimer’s disease. FASEB J Off Publ Fed Am Soc Exp Biol 18:203–205

    CAS  Google Scholar 

  • Ginhoux F, Prinz M (2015) Origin of microglia: current concepts and past controversies. Cold Spring Harb Perspect Biol 7:a020537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goedert M, Spillantini MG (2011) Pathogenesis of the tauopathies. J Mol Neurosci MN 45:425–431

    Article  CAS  PubMed  Google Scholar 

  • Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JSK, Younkin S et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Callaway JB, Ting JP-Y (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21:677–687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gustin A, Kirchmeyer M, Koncina E, Felten P, Losciuto S, Heurtaux T, Tardivel A, Heuschling P, Dostert C (2015) NLRP3 inflammasome is expressed and functional in mouse brain microglia but not in astrocytes. PLoS ONE 10:e0130624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamelin L, Lagarde J, Dorothée G, Leroy C, Labit M, Comley RA, de Souza LC, Corne H, Dauphinot L, Bertoux M et al (2016) Early and protective microglial activation in Alzheimer’s disease: a prospective study using 18F-DPA-714 PET imaging. Brain J Neurol 139:1252–1264

    Article  Google Scholar 

  • Harigaya Y, Saido TC, Eckman CB, Prada CM, Shoji M, Younkin SG (2000) Amyloid beta protein starting pyroglutamate at position 3 is a major component of the amyloid deposits in the Alzheimer’s disease brain. Biochem Biophys Res Commun 276:422–427

    Article  CAS  PubMed  Google Scholar 

  • Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heneka MT (2017) Inflammasome activation and innate immunity in Alzheimer’s disease. Brain Pathol Zurich Switz 27:220–222

    Article  Google Scholar 

  • Heneka MT, Reyes-Irisarri E, Hüll M, Kummer MP (2011) Impact and therapeutic potential of PPARs in Alzheimer’s disease. Curr Neuropharmacol 9:643–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng T-C et al (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493:674–678

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14:463–477

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM et al (2015a) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heneka MT, Fink A, Doblhammer G (2015b) Effect of pioglitazone medication on the incidence of dementia. Ann Neurol 78:284–294

    Article  CAS  PubMed  Google Scholar 

  • Hollingworth P, Harold D, Sims R, Gerrish A, Lambert J-C, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43:429–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins PA, Sriskandan S (2005) Mammalian Toll-like receptors: to immunity and beyond. Clin Exp Immunol 140:395–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyman BT, Kromer LJ, Van Hoesen GW (1988) A direct demonstration of the perforant pathway terminal zone in Alzheimer’s disease using the monoclonal antibody Alz-50. Brain Res 450:392–397

    Article  CAS  PubMed  Google Scholar 

  • Imamura R, Wang Y, Kinoshita T, Suzuki M, Noda T, Sagara J, Taniguchi S, Okamoto H, Suda T (2010) Anti-inflammatory activity of PYNOD and its mechanism in humans and mice. J Immunol Baltim Md 1950(184):5874–5884

    Google Scholar 

  • Jana M, Palencia CA, Pahan K (2008) Fibrillar amyloid-beta peptides activate microglia via TLR2: implications for Alzheimer’s disease. J Immunol Baltim Md 1950(181):7254–7262

    Google Scholar 

  • Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, Chishti MA, Horne P, Heslin D, French J et al (2000) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408:979–982

    Article  CAS  PubMed  Google Scholar 

  • Jin J-J, Kim H-D, Maxwell JA, Li L, Fukuchi K-I (2008) Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease. J Neuroinflammation 5:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116

    Article  CAS  PubMed  Google Scholar 

  • Kaushal V, Dye R, Pakavathkumar P, Foveau B, Flores J, Hyman B, Ghetti B, Koller BH, LeBlanc AC (2015) Neuronal NLRP1 inflammasome activation of Caspase-1 coordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated Caspase-6 activation. Cell Death Differ 22:1676–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitazawa M, Cheng D, Tsukamoto MR, Koike MA, Wes PD, Vasilevko V, Cribbs DH, LaFerla FM (2011) Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer’s disease model. J Immunol Baltim Md 1950(187):6539–6549

    Google Scholar 

  • Lambert J-C, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099

    Article  CAS  PubMed  Google Scholar 

  • Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landi S, Moreno V, Gioia-Patricola L, Guino E, Navarro M, de Oca J, Capella G, Canzian F, Bellvitge Colorectal Cancer Study Group (2003) Association of common polymorphisms in inflammatory genes interleukin (IL)6, IL8, tumor necrosis factor alpha, NFKB1, and peroxisome proliferator-activated receptor gamma with colorectal cancer. Cancer Res 63:3560–3566

    CAS  PubMed  Google Scholar 

  • Landreth GE, Reed-Geaghan EG (2009) Toll-like receptors in Alzheimer’s disease. Curr Top Microbiol Immunol 336:137–153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lange KW, Lange KM, Makulska-Gertruda E, Nakamura Y, Reissmann A, Kanaya S, Hauser J (2017) Ketogenic diets and Alzheimer’s disease. Food Sci Hum Wellness 6:1–9

    Article  Google Scholar 

  • Lee DC, Rizer J, Selenica M-LB, Reid P, Kraft C, Johnson A, Blair L, Gordon MN, Dickey CA, Morgan D (2010) LPS- induced inflammation exacerbates phospho-tau pathology in rTg4510 mice. J Neuroinflammation 7:56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lemere CA (2007) A beneficial role for IL-1 beta in Alzheimer disease? J Clin Invest 117:1483–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letiembre M, Liu Y, Walter S, Hao W, Pfander T, Wrede A, Schulz-Schaeffer W, Fassbender K (2009) Screening of innate immune receptors in neurodegenerative diseases: a similar pattern. Neurobiol Aging 30:759–768

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Walter S, Stagi M, Cherny D, Letiembre M, Schulz-Schaeffer W, Heine H, Penke B, Neumann H, Fassbender K (2005) LPS receptor (CD14): a receptor for phagocytosis of Alzheimer’s amyloid peptide. Brain J Neurol 128:1778–1789

    Article  Google Scholar 

  • Liu S, Liu Y, Hao W, Wolf L, Kiliaan AJ, Penke B, Rübe CE, Walter J, Heneka MT, Hartmann T et al (2012) TLR2 is a primary receptor for Alzheimer’s amyloid β peptide to trigger neuroinflammatory activation. J Immunol Baltim Md 1950(188):1098–1107

    Google Scholar 

  • Lue LF, Rydel R, Brigham EF, Yang LB, Hampel H, Murphy GM, Brachova L, Yan SD, Walker DG, Shen Y et al (2001) Inflammatory repertoire of Alzheimer’s disease and nondemented elderly microglia in vitro. Glia 35:72–79

    Article  CAS  PubMed  Google Scholar 

  • Matarin M, Salih DA, Yasvoina M, Cummings DM, Guelfi S, Liu W, Nahaboo Solim MA, Moens TG, Paublete RM, Ali SS et al (2015) A genome-wide gene-expression analysis and database in transgenic mice during development of amyloid or tau pathology. Cell Rep 10:633–644

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGeer PL, McGeer EG (2001) Polymorphisms in inflammatory genes and the risk of Alzheimer disease. Arch Neurol 58:1790–1792

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, McGeer EG (2013) The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol (Berl) 126:479–497

    Article  CAS  Google Scholar 

  • McGeer PL, Itagaki S, Tago H, McGeer EG (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 79:195–200

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, Itagaki S, Tago H, McGeer EG (1988) Occurrence of HLA-DR reactive microglia in Alzheimer’s disease. Ann N Y Acad Sci 540:319–323

    Article  CAS  PubMed  Google Scholar 

  • Michaud J-P, Hallé M, Lampron A, Thériault P, Préfontaine P, Filali M, Tribout-Jover P, Lanteigne A-M, Jodoin R, Cluff C et al (2013) Toll-like receptor 4 stimulation with the detoxified ligand monophosphoryl lipid A improves Alzheimer’s disease-related pathology. Proc Natl Acad Sci USA 110:1941–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minoretti P, Gazzaruso C, Vito CD, Emanuele E, Bianchi M, Coen E, Reino M, Geroldi D (2006) Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility to late-onset Alzheimer’s disease. Neurosci Lett 391:147–149

    Article  CAS  PubMed  Google Scholar 

  • Morales I, Jiménez JM, Mancilla M, Maccioni RB (2013) Tau oligomers and fibrils induce activation of microglial cells. J Alzheimer’s Dis JAD 37:849–856

    Article  CAS  Google Scholar 

  • Morihara T, Teter B, Yang F, Lim GP, Boudinot S, Boudinot FD, Frautschy SA, Cole GM (2005) Ibuprofen suppresses interleukin-1beta induction of pro-amyloidogenic alpha1-antichymotrypsin to ameliorate beta-amyloid (Abeta) pathology in Alzheimer’s models. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 30:1111–1120

    Article  CAS  Google Scholar 

  • Murphy N, Grehan B, Lynch MA (2014) Glial uptake of amyloid beta induces NLRP3 inflammasome formation via cathepsin-dependent degradation of NLRP10. Neuromol Med 16:205–215

    Article  CAS  Google Scholar 

  • Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43:436–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nalivaeva NN, Belyaev ND, Kerridge C, Turner AJ (2014) Amyloid-clearing proteins and their epigenetic regulation as a therapeutic target in Alzheimer’s disease. Front Aging Neurosci 6:235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicoll JAR, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 9:448–452

    Article  CAS  PubMed  Google Scholar 

  • Nilson AN, English KC, Gerson JE, Barton Whittle T, Nicolas Crain C, Xue J, Sengupta U, Castillo-Carranza DL, Zhang W, Gupta P et al (2017) Tau oligomers associate with inflammation in the brain and retina of tauopathy mice and in neurodegenerative diseases. J Alzheimer’s Dis JAD 55:1083–1099

    Article  CAS  Google Scholar 

  • Okello A, Edison P, Archer HA, Turkheimer FE, Kennedy J, Bullock R, Walker Z, Kennedy A, Fox N, Rossor M et al (2009) Microglial activation and amyloid deposition in mild cognitive impairment: a PET study. Neurology 72:56–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perregaux DG, McNiff P, Laliberte R, Hawryluk N, Peurano H, Stam E, Eggler J, Griffiths R, Dombroski MA, Gabel CA (2001) Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. J Pharmacol Exp Ther 299:187–197

    CAS  PubMed  Google Scholar 

  • Pontillo A, Catamo E, Arosio B, Mari D, Crovella S (2012) NALP1/NLRP1 genetic variants are associated with Alzheimer disease. Alzheimer Dis Assoc Disord 26:277–281

    Article  CAS  PubMed  Google Scholar 

  • Pottier C, Ravenscroft TA, Brown PH, Finch NA, Baker M, Parsons M, Asmann YW, Ren Y, Christopher E, Levitch D et al (2016) TYROBP genetic variants in early-onset Alzheimer’s disease. Neurobiol Aging 48:222.e9–222.e15

    Article  CAS  Google Scholar 

  • Qin Y, Liu Y, Hao W, Decker Y, Tomic I, Menger MD, Liu C, Fassbender K (2016) Stimulation of TLR4 attenuates Alzheimer’s disease-related symptoms and pathology in tau-transgenic mice. J Immunol Baltim Md 1950(197):3281–3292

    Google Scholar 

  • Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D, Stoltze L, Calhoun ME, Jäggi F, Wolburg H, Gengler S et al (2006) Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep 7:940–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramanan VK, Risacher SL, Nho K, Kim S, Shen L, McDonald BC, Yoder KK, Hutchins GD, West JD, Tallman EF et al (2015) GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer’s disease implicates microglial activation gene IL1RAP. Brain J Neurol 138:3076–3088

    Article  Google Scholar 

  • Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE (2009) CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. J Neurosci Off J Soc Neurosci 29:11982–11992

    Article  CAS  Google Scholar 

  • Reed-Geaghan EG, Reed QW, Cramer PE, Landreth GE (2010) Deletion of CD14 attenuates Alzheimer’s disease pathology by influencing the brain’s inflammatory milieu. J Neurosci Off J Soc Neurosci 30:15369–15373

    Article  CAS  Google Scholar 

  • Richard KL, Filali M, Préfontaine P, Rivest S (2008) Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid beta 1-42 and delay the cognitive decline in a mouse model of Alzheimer’s disease. J Neurosci Off J Soc Neurosci 28:5784–5793

    Article  CAS  Google Scholar 

  • Saman S, Kim W, Raya M, Visnick Y, Miro S, Saman S, Jackson B, McKee AC, Alvarez VE, Lee NCY et al (2012) Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J Biol Chem 287:3842–3849

    Article  CAS  PubMed  Google Scholar 

  • Saresella M, La Rosa F, Piancone F, Zoppis M, Marventano I, Calabrese E, Rainone V, Nemni R, Mancuso R, Clerici M (2016) The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease. Mol Neurodegener 11:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scheiblich H, Schlütter A, Golenbock DT, Latz E, Martinez-Martinez P, Heneka MT (2017) Activation of the NLRP3 inflammasome in microglia: the role of ceramide. J Neurochem. 143(5):534–550. https://doi.org/10.1111/jnc.14225

    Article  CAS  PubMed  Google Scholar 

  • Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177

    Article  CAS  PubMed  Google Scholar 

  • Scholtzova H, Kascsak RJ, Bates KA, Boutajangout A, Kerr DJ, Meeker HC, Mehta PD, Spinner DS, Wisniewski T (2009) Induction of toll-like receptor 9 signaling as a method for ameliorating Alzheimer’s disease-related pathology. J Neurosci Off J Soc Neurosci 29:1846–1854

    Article  CAS  Google Scholar 

  • Scholtzova H, Chianchiano P, Pan J, Sun Y, Goñi F, Mehta PD, Wisniewski T (2014) Amyloid β and Tau Alzheimer’s disease related pathology is reduced by Toll-like receptor 9 stimulation. Acta Neuropathol Commun 2:101

    PubMed  PubMed Central  Google Scholar 

  • Scholtzova H, Do E, Dhakal S, Sun Y, Liu S, Mehta PD, Wisniewski T (2017) Innate immunity stimulation via toll-like receptor 9 ameliorates vascular amyloid pathology in Tg-SwDI mice with associated cognitive benefits. J Neurosci Off J Soc Neurosci 37:936–959

    Article  CAS  Google Scholar 

  • Sheedy FJ, Grebe A, Rayner KJ, Kalantari P, Ramkhelawon B, Carpenter SB, Becker CE, Ediriweera HN, Mullick AE, Golenbock DT et al (2013) CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 14:812–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song M, Jin J, Lim J-E, Kou J, Pattanayak A, Rehman JA, Kim H-D, Tahara K, Lalonde R, Fukuchi K (2011) TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. J Neuroinflammation 8:92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA et al (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11:155–161

    Article  CAS  PubMed  Google Scholar 

  • Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481:278–286

    Article  CAS  PubMed  Google Scholar 

  • Stutz A, Horvath GL, Monks BG, Latz E (2013) ASC speck formation as a readout for inflammasome activation. Methods Mol Biol Clifton NJ 1040:91–101

    Article  CAS  Google Scholar 

  • Su F, Bai F, Zhou H, Zhang Z (2016) Microglial toll-like receptors and Alzheimer’s disease. Brain Behav Immun 52:187–198

    Article  CAS  PubMed  Google Scholar 

  • Suh EC, Jung YJ, Kim YA, Park E-M, Lee SJ, Lee KE (2013) Knockout of Toll-like receptor 2 attenuates Aβ25-35-induced neurotoxicity in organotypic hippocampal slice cultures. Neurochem Int 63:818–825

    Article  CAS  PubMed  Google Scholar 

  • Tahara K, Kim H-D, Jin J-J, Maxwell JA, Li L, Fukuchi K (2006) Role of toll-like receptor signalling in Abeta uptake and clearance. Brain J Neurol 129:3006–3019

    Article  Google Scholar 

  • Tan M-S, Yu J-T, Jiang T, Zhu X-C, Tan L (2013) The NLRP3 inflammasome in Alzheimer’s disease. Mol Neurobiol 48:875–882

    Article  CAS  PubMed  Google Scholar 

  • Tan M-S, Tan L, Jiang T, Zhu X-C, Wang H-F, Jia C-D, Yu J-T (2014) Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death Dis 5:e1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Togo T, Akiyama H, Iseki E, Kondo H, Ikeda K, Kato M, Oda T, Tsuchiya K, Kosaka K (2002) Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J Neuroimmunol 124:83–92

    Article  CAS  PubMed  Google Scholar 

  • Tzeng T-C, Golenbock D (2014) NLRP3 inflammasome activation in Alzheimer’s disease (INC9P.446). J Immunol 192(188):5

    Google Scholar 

  • Venegas C, Heneka MT (2017) Danger-associated molecular patterns in Alzheimer’s disease. J Leukoc Biol 101:87–98

    Article  CAS  PubMed  Google Scholar 

  • Walsh JG, Muruve DA, Power C (2014) Inflammasomes in the CNS. Nat Rev Neurosci 15:84–97

    Article  CAS  PubMed  Google Scholar 

  • Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N, Walter J, Schulz-Schuffer W et al (2007) Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 20:947–956

    Article  CAS  Google Scholar 

  • Wang Y, Hasegawa M, Imamura R, Kinoshita T, Kondo C, Konaka K, Suda T (2004) PYNOD, a novel Apaf-1/CED4-like protein is an inhibitor of ASC and caspase-1. Int Immunol 16:777–786

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Tan L, Wang H-F, Tan C-C, Meng X-F, Wang C, Tang S-W, Yu J-T (2015a) Anti-inflammatory drugs and risk of Alzheimer’s disease: an updated systematic review and meta-analysis. J Alzheimer’s Dis JAD 44:385–396

    Article  Google Scholar 

  • Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, Gilfillan S, Krishnan GM, Sudhakar S, Zinselmeyer BH et al (2015b) TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160:1061–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller RO, Subash M, Preston SD, Mazanti I, Carare RO (2008) Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol. Zurich Switz 18:253–266

    Article  CAS  Google Scholar 

  • Wong PC, Cai H, Borchelt DR, Price DL (2002) Genetically engineered mouse models of neurodegenerative diseases. Nat Neurosci 5:633–639

    Article  CAS  PubMed  Google Scholar 

  • Youm Y-H, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, D’Agostino D, Planavsky N, Lupfer C, Kanneganti TD et al (2015) The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med 21:263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Gaiteri C, Bodea L-G, Wang Z, McElwee J, Podtelezhnikov AA, Zhang C, Xie T, Tran L, Dobrin R et al (2013) Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 153:707–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zotova E, Bharambe V, Cheaveau M, Morgan W, Holmes C, Harris S, Neal JW, Love S, Nicoll JAR, Boche D (2013) Inflammatory components in human Alzheimer’s disease and after active amyloid-β42 immunization. Brain J Neurol 136:2677–2696

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Thomas Heneka.

Ethics declarations

Funding

This work was supported by the EU Joint Programme—Neurodegenerative Disease Research (JPND) MADGIC (01ED1611), through the German Federal Ministry of Education and Research (BMBF).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dansokho, C., Heneka, M.T. Neuroinflammatory responses in Alzheimer’s disease. J Neural Transm 125, 771–779 (2018). https://doi.org/10.1007/s00702-017-1831-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-017-1831-7

Keywords

Navigation