Skip to main content
Log in

The association of proopiomelanocortin polymorphisms with the risk of major depressive disorder and the response to antidepressants via interactions with stressful life events

  • Psychiatry and Preclinical Psychiatric Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Hyperactivity of the hypothalamic–pituitary–adrenal (HPA) axis is among the most consistent neuroendocrine abnormalities in major depressive disorder (MDD). The peptide adrenocorticotropin hormone (ACTH) mediates HPA axis function during stress and is encoded by the proopiomelanocortin (POMC) gene polycistronically. After screening 39 POMC polymorphisms, we evaluated the association of polymorphisms with susceptibility to MDD in 145 MDD patients and 193 normal subjects; in patients, we also evaluated the response to treatment with antidepressants. Additionally, we investigated the role of gene–environment interaction between POMC haplotypes and stressful life events (SLE) in the treatment response. Although genotypes and haplotypes were not significantly associated with the risk of MDD, non-remitters were more likely to carry haplotype 1 (ht1) and to have no ht2 than were remitters (corrected P = 0.010–0.035). Although observations were limited in patients without SLE, a significant haplotype–SLE interaction was observed (P = 0.020). Additionally, at 1, 2, and 8 weeks of treatment, the 21-item Hamilton Depression Rating scores of MDD subjects with POMC ht2 were significantly (P = 0.003–0.044) lower than those of patients with ht1 in subjects those did not experience SLE. MDD subjects possessing POMC ht2 achieved remission significantly (P = 0.013; survival analysis) faster than patients with ht1. This study suggests that POMC haplotypes, via an interaction with SLE, are associated with antidepressant treatment outcomes in MDD patients. Regarding SLE, haplotypes of the POMC gene could be useful markers for predicting the response to antidepressant treatment in MDD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aperia B, Bergman H, Engelbrektson K, Thoren M, Wetterberg L (1985) Effects of electroconvulsive therapy on neuropsychological function and circulating levels of ACTH, cortisol, prolactin, and TSH in patients with major depressive illness. Acta Psychiatr Scand 72:536–541

    Article  CAS  PubMed  Google Scholar 

  • Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571

    Article  CAS  PubMed  Google Scholar 

  • Ben-Efraim YJ, Wasserman D, Wasserman J, Sokolowski M (2013) Family-based study of AVPR1B association and interaction with stressful life events on depression and anxiety in suicide attempts. Neuropsychopharmacol 38:1504–1511. doi:10.1038/npp.2013.49

    Article  CAS  Google Scholar 

  • Binder EB, Salyakina D, Lichtner P et al (2004) Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 36:1319–1325. doi:10.1038/ng1479

    Article  CAS  PubMed  Google Scholar 

  • Binder EB, Owens MJ, Liu W et al (2010) Association of polymorphisms in genes regulating the corticotropin-releasing factor system with antidepressant treatment response. Arch Gen Psychiatry 67:369–379. doi:10.1001/archgenpsychiatry.2010.18

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury NI, Souza RP, Tiwari AK et al (2014) Investigation of melanocortin system gene variants in antipsychotic-induced weight gain. World J Biol Psychiatry 15:251–258. doi:10.3109/15622975.2013.858827

    Article  PubMed  Google Scholar 

  • Cupic B, Stefulj J, Zapletal E, Matosic A, Bordukalo-Niksic T, Cicin-Sain L, Gabrilovac J (2013) Opioid system genes in alcoholism: a case-control study in Croatian population. Neuropeptides 47:315–319. doi:10.1016/j.npep.2013.08.002

    Article  CAS  PubMed  Google Scholar 

  • de Keyzer Y, Lenne F, Auzan C et al (1996) The pituitary V3 vasopressin receptor and the corticotroph phenotype in ectopic ACTH syndrome. J Clin Invest 97:1311–1318. doi:10.1172/jci118547

    Article  PubMed Central  PubMed  Google Scholar 

  • De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19:269–301. doi:10.1210/edrv.19.3.0331

    PubMed  Google Scholar 

  • Dempster EL, Burcescu I, Wigg K et al (2007) Evidence of an association between the vasopressin V1b receptor gene (AVPR1B) and childhood-onset mood disorders. Arch Gen Psychiatry 64:1189–1195. doi:10.1001/archpsyc.64.10.1189

    Article  CAS  PubMed  Google Scholar 

  • Doherty JL, Owen MJ (2014) Genomic insights into the overlap between psychiatric disorders: implications for research and clinical practice. Genome Med 6:29. doi:10.1186/gm546

    Article  PubMed Central  PubMed  Google Scholar 

  • Du H, Vimaleswaran KS, Angquist L et al (2011) Genetic polymorphisms in the hypothalamic pathway in relation to subsequent weight change—the DiOGenes study. PLoS One 6:e17436. doi:10.1371/journal.pone.0017436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fang Z, Rajewsky N (2011) The impact of miRNA target sites in coding sequences and in 3′UTRs. PLoS One 6:e18067. doi:10.1371/journal.pone.0018067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Forman JJ, Coller HA (2010) The code within the code: microRNAs target coding regions. Cell cycle (Georgetown, Tex) 9:1533-1541

  • Fournier JC, DeRubeis RJ, Hollon SD, Dimidjian S, Amsterdam JD, Shelton RC, Fawcett J (2010) Antidepressant drug effects and depression severity: a patient-level meta-analysis. JAMA 303:47–53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graff M, Ngwa JS, Workalemahu T et al (2013) Genome-wide analysis of BMI in adolescents and young adults reveals additional insight into the effects of genetic loci over the life course. Hum Mol Genet 22:3597–3607. doi:10.1093/hmg/ddt205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grabe HJ, Schwahn C, Appel K et al (2010) Childhood maltreatment, the corticotropin-releasing hormone receptor gene and adult depression in the general population. Am J Med Genet B Neuropsychiatr Genet 153:1483–1493. doi:10.1002/ajmg.b.31131

    Article  Google Scholar 

  • Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiat 23:56–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayase T, Yamamoto Y, Yamamoto K (2002) Increased immunoreactivity of POMC-derived neuropeptides and immediate-early gene-derived proteins (c-Fos and Egr-1 proteins) as an early step of acute cocaine-induced stressor effects: comparison with the effects of immobilization stress. Nihon Arukoru Yakubutsu Igakkai Zasshi 37:586–596

    CAS  PubMed  Google Scholar 

  • Hedrick PW (1987) Gametic disequilibrium measures: proceed with caution. Genetics 117:331–341

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacol 23:477–501. doi:10.1016/s0893-133x(00)00159-7

    Article  CAS  Google Scholar 

  • Holsboer F, Barden N (1996) Antidepressants and hypothalamic-pituitary-adrenocortical regulation. Endocr Rev 17:187–205. doi:10.1210/edrv-17-2-187

    Article  CAS  PubMed  Google Scholar 

  • Ishitobi Y, Nakayama S, Yamaguchi K et al (2012) Association of CRHR1 and CRHR2 with major depressive disorder and panic disorder in a Japanese population. Am J Med Genet B Neuropsychiatr Genet 159b:429–436. doi:10.1002/ajmg.b.32046

    Article  PubMed  Google Scholar 

  • Kendler KS, Kuhn JW, Vittum J, Prescott CA, Riley B (2005) The interaction of stressful life events and a serotonin transporter polymorphism in the prediction of episodes of major depression: a replication. Arch Gen Psychiatry 62:529–535. doi:10.1001/archpsyc.62.5.529

    Article  CAS  PubMed  Google Scholar 

  • Kendler KS, Gatz M, Gardner CO, Pedersen NL (2006) A Swedish national twin study of lifetime major depression. Am J Psychiatry 163:109–114

    Article  PubMed  Google Scholar 

  • Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR et al (2003) The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 289:3095–3105

    Article  PubMed  Google Scholar 

  • Khan A, Leventhal RM, Khan SR, Brown WA (2002) Severity of depression and response to antidepressants and placebo: an analysis of the Food and Drug Administration database. J Clin Psychopharmacol 22:40–45

    Article  PubMed  Google Scholar 

  • Kirsch I, Deacon BJ, Huedo-Medina TB, Scoboria A, Moore TJ, Johnson BT (2008) Initial severity and antidepressant benefits: a meta-analysis of data submitted to the Food and Drug Administration. PLoS Med 5:e45

    Article  PubMed Central  PubMed  Google Scholar 

  • Kuehnen P, Mischke M, Wiegand S et al (2012) An Alu element-associated hypermethylation variant of the POMC gene is associated with childhood obesity. PLoS Genet 8:e1002543. doi:10.1371/journal.pgen.1002543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee H-Y, Kang R-H, Han S-W, Paik J-W, Chang HS, Jeong YJ, Lee M-S (2009) Association of glucocorticoid receptor polymorphisms with the susceptibility to major depressive disorder and treatment responses in Korean depressive patients. Acta Neuropsychiatrica 21:11–17

    Article  PubMed  Google Scholar 

  • Liu Z, Zhu F, Wang G et al (2006) Association of corticotropin-releasing hormone receptor1 gene SNP and haplotype with major depression. Neurosci Lett 404:358–362. doi:10.1016/j.neulet.2006.06.016

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Zhu F, Wang G et al (2007) Association study of corticotropin-releasing hormone receptor1 gene polymorphisms and antidepressant response in major depressive disorders. Neurosci Lett 414:155–158. doi:10.1016/j.neulet.2006.12.013

    Article  CAS  PubMed  Google Scholar 

  • Meijer OC, de Kloet ER (1998) Corticosterone and serotonergic neurotransmission in the hippocampus: functional implications of central corticosteroid receptor diversity. Crit Rev Neurobiol 12:1–20

    Article  CAS  PubMed  Google Scholar 

  • Mountjoy KG, Robbins LS, Mortrud MT, Cone RD (1992) The cloning of a family of genes that encode the melanocortin receptors. Science (New York, NY) 257:1248–1251

    Article  CAS  Google Scholar 

  • Nakanishi S, Inoue A, Kita T, Nakamura M, Chang AC, Cohen SN, Numa S (1979) Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor. Nature 278:423–427

    Article  CAS  PubMed  Google Scholar 

  • Papiol S, Arias B, Gasto C, Gutierrez B, Catalan R, Fananas L (2007) Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment. J Affect Disord 104:83–90. doi:10.1016/j.jad.2007.02.017

    Article  CAS  PubMed  Google Scholar 

  • Purcell S, Cherny SS, Sham PC (2003) Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19:149–150

    Article  CAS  PubMed  Google Scholar 

  • Schule C (2007) Neuroendocrinological mechanisms of actions of antidepressant drugs. J Neuroendocrinol 19:213–226. doi:10.1111/j.1365-2826.2006.01516.x

    Article  CAS  PubMed  Google Scholar 

  • Shadrina M, Nikopensius T, Slominsky P et al (2006) Association study of sporadic Parkinson’s disease genetic risk factors in patients from Russia by APEX technology. Neurosci Lett 405:212–216. doi:10.1016/j.neulet.2006.06.066

    Article  CAS  PubMed  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989. doi:10.1086/319501 S0002-9297(07)61424-4 (pii)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki M, Egashira N, Kajiya H et al (2008) ACTH and alpha-subunit are co-expressed in rare human pituitary corticotroph cell adenomas proposed to originate from ACTH-committed early pituitary progenitor cells. Endocr Pathol 19:17–26. doi:10.1007/s12022-008-9014-6

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Mizusawa K (2013) Posttranslational modifications of proopiomelanocortin in vertebrates and their biological significance. Front Endocrinol (Lausanne) 4:143. doi:10.3389/fendo.2013.00143

    Google Scholar 

  • Ternouth A, Brandys MK, van der Schouw YT, Hendriks J, Jansson JO, Collier D, Adan RA (2011) Association study of POMC variants with body composition measures and nutrient choice. Eur J Pharmacol 660:220–225. doi:10.1016/j.ejphar.2010.10.112

    Article  CAS  PubMed  Google Scholar 

  • van West D, Del-Favero J, Aulchenko Y et al (2004) A major SNP haplotype of the arginine vasopressin 1B receptor protects against recurrent major depression. Mol Psychiatry 9:287–292. doi:10.1038/sj.mp.4001420

    Article  PubMed  Google Scholar 

  • Wang F, Gelernter J, Kranzler HR, Zhang H (2012) Identification of POMC exonic variants associated with substance dependence and body mass index. PLoS One 7:e45300. doi:10.1371/journal.pone.0045300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wasserman D, Sokolowski M, Rozanov V, Wasserman J (2008) The CRHR1 gene: a marker for suicidality in depressed males exposed to low stress. Genes Brain Behav 7:14–19. doi:10.1111/j.1601-183X.2007.00310.x

    CAS  PubMed  Google Scholar 

  • Wolkowitz OM, Reus VI, Manfredi F, Ingbar J, Brizendine L, Weingartner H (1993) Ketoconazole administration in hypercortisolemic depression. Am J Psychiatry 150:810–812

    Article  CAS  PubMed  Google Scholar 

  • Wong ML, Kling MA, Munson PJ et al (2000) Pronounced and sustained central hypernoradrenergic function in major depression with melancholic features: relation to hypercortisolism and corticotropin-releasing hormone. Proc Nat Acad Sci USA 97:325–330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao Z, Liu W, Gao K et al (2011) Interaction between CRHR1 and BDNF genes increases the risk of recurrent major depressive disorder in Chinese population. PLoS One 6:e28733. doi:10.1371/journal.pone.0028733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Kranzler HR, Weiss RD et al (2009) Pro-opiomelanocortin gene variation related to alcohol or drug dependence: evidence and replications across family- and population-based studies. Biol Psychiatry 66:128–136. doi:10.1016/j.biopsych.2008.12.021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zobel A, Schuhmacher A, Jessen F et al (2010) DNA sequence variants of the FKBP5 gene are associated with unipolar depression. Int J Neuropsychopharmacol 13:649–660. doi:10.1017/s1461145709991155

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (Grant no. HI12C0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Soo Lee.

Additional information

H. S. Chang and E. S. Won contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 48 kb)

702_2014_1333_MOESM2_ESM.pptx

Supplementary material 2 (PPTX 74 kb). Supplementary Figure S1. Kaplan–Meier survival analysis for the association of POMC haplotype 1 and haplotype 2 with the time of achieving remission after antidepressant treatment. P values were obtained using generalized Wilcoxson model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, H.S., Won, E.S., Lee, HY. et al. The association of proopiomelanocortin polymorphisms with the risk of major depressive disorder and the response to antidepressants via interactions with stressful life events. J Neural Transm 122, 59–68 (2015). https://doi.org/10.1007/s00702-014-1333-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1333-9

Keywords

Navigation