Skip to main content

Advertisement

Log in

Bacterial melanin increases electrical activity of neurons in Substantia Nigra pars compacta

  • Neurology and Preclinical Neurological Studies - Short communication
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Bacterial melanin (BM) has been used in different series of experiments as a neuroprotector. It facilitates recovery and regeneration processes after CNS lesions. The action of BM after Substantia Nigra destruction is of major interest. Electrophysiological study tries to reveal the effects of this substance on the electrical activity of Substantia Nigra pars compacta (SNc) neurons. The substance significantly increases the firing rate of SNc dopaminergic neurons. BM increases the rate of excitatory responses after high frequency tetanic stimulation of ipsilateral caudate–putamen. Overall increase in firing rate of SN neurons can contribute to recovery processes after neuronal degeneration in SN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aghajanyan AE, Hambardzumyan AA, Hovsepyan AS, Asaturian RA, Vardanyan AA, Saghiyan AA (2005) Isolation, purification and physicochemical characterization of water-soluble Bacillus thuringiensis melanin. Pigment Cell Res 18(2):130–135

    Article  CAS  PubMed  Google Scholar 

  • Azaryan KG, Petrosyan MT, Popov YG, Martirosyan GS (2004) Melanin in the agriculture and dendrology. Bull Armen Agric Acad 4:7–10

    Google Scholar 

  • Berliner DL, Erwin RL, McGee DR (1993) Methods of treating Parkinson’s disease using melanin. US Patent 5,210,076 A

  • Blythe SN, Atherton JF, Bevan MD (2007) Synaptic activation of dendritic AMPA and NMDA receptors generates transient high-frequency firing in substantia nigra dopamine neurons in vitro. J Neurophysiol 97(4):2837–2850

    Article  CAS  PubMed  Google Scholar 

  • Fanardzhyan VV (2001) The functional role of the red nucleus in the cerebral cortex cerebellum–spinal cord communicating system. Usp Fiziol Nauk 32(2):3–15

    Google Scholar 

  • Fasano M, Bergamasko B, Lopiano L (2006) Modifications of the iron neuromelanin system in Parkinson’s disease. J Neurochem 96:909–916

    Article  CAS  PubMed  Google Scholar 

  • Faucheux BA, Maгtin ME, Beaumont CM, Hauw JJ, Agid V, Hiгsch EC (2003) Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson’s disease. J. Neuгochem 86(5):1142–1148

    Article  CAS  Google Scholar 

  • Gevorkyan OV, Meliksetyan IB, Hovsepyan AS, Sagiyan AS (2007) Effects of BT-melanin on recovery of operant conditioned reflexes in rats after ablation of the sensorimotor cortex. Neurosci Behav Physiol 37(5):471–476

    Article  CAS  PubMed  Google Scholar 

  • Lacey MG, Mercuri NB, North RA (1990) Actions of cocaine on rat dopaminergic neurones in vitro. Br J Pharmacol 99(4):731–735

    Article  CAS  PubMed  Google Scholar 

  • Lee CR, Abercrombie ED, Tepper JM (2004) Pallidal control of substantia nigra dopaminergic neuron firing pattern and its relation to extracellular neostriatal dopamine levels. Neuroscience 129:481–489

    Article  CAS  PubMed  Google Scholar 

  • Heida T, Stegenga J, Lourens, MAJ, Meijer HGE, van Gils SA, Lazarov N, Marani E (2012) Simulating idiopathic Parkinson’s disease by in vitro and computational models. In: Naik GR (ed) Applied biological engineering—principles and practice. Intech, Croatia, pp 209–236

  • Manivasagan P, Venkatesan J, Sivakumar K, Kim S-K (2013) Actinobacterial melanins: current status and perspective for the future. World J Microbiol Biotechnol. doi:10.1007/s11274-013-1352-y

    PubMed  Google Scholar 

  • Mann DM, Yates PO, Marcyniuk B (1984) Changes in nerve cells of the nucleus basalis of Meynert in Alzheimer’s disease and their relationship to ageing and to the accumulation of lipofuscin pigment. Mech Ageing Dev 25(1–2):189–204

    Article  CAS  PubMed  Google Scholar 

  • Paxinos O, Watson C (2005) The rat brain in stereotaxic coordinates. Academic, Burlington, p 367

    Google Scholar 

  • Petrosyan TR, Gevorkyan OV, Meliksetyan IB, Hovsepyan AS, Manvelyan LR (2012) The action of bacterial melanin in rats after pyramidal tract lesions. J Pathophysiol Elsevier 19:P71–P80

    Article  Google Scholar 

  • Popov JG (2003) Proceedings of II Moscow International Congress of Biotechnology: a status and prospects of development. Part I, Moscow, pp 222–223

  • Proctor PH (1989) Free radicals and human disease. In: CRC Handbook of Free Radicals and Antioxidants, vol 1, no 1989, pp 209–221

  • Proctor PH, Reynolds ES (1984) Free radicals and disease in man. Physiol Chem Phys Med NMR 16(3):175–195

    CAS  PubMed  Google Scholar 

  • Sarkissian JS, Galoyan AA, Kamalyan RG, Chavushyan VA, Meliksetyan IB, Poghosyan MV, Gevorkyan OV, Hovsepyan AS, Avakyan ZE, Kazaryan SA, Manucharyan MK (2007) The effect of bacterial melanin on electrical activity of neurons of the substantia nigra under conditions of GABA generation. Neurochem J 1(3):227–234

    Article  Google Scholar 

  • Sarna T (1992) Properties and function of the ocular melanin—a photobiophysical view. J Photochem Photobiol 12:215–258

    Article  CAS  Google Scholar 

  • Solis A, Lara ME, Rendon LE (2007) Photoelectrochemical properties of melanin. Nat Preced hdl:10101/npre., Nov. 1312.1

  • Zecca L (2002) The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson’s disease. FEBS Lett 16:216–220

    Article  Google Scholar 

  • Zecca L, Tampellini D, Gerlach M, Riederer P, Fariello RG, Sulzer D (2001) Substantia nigra neuromelanin: structure, synthesis, and molecular behaviour. J Clin Pathol Mol Pathol 54:414–418

    CAS  Google Scholar 

  • Zecca L, Wilms H, Geick S, Claasen JH, Brandenburg LO, Holzknecht C, Panizza ML, Zucca FA, Deuschl G, Sievers J, Lucius R (2008) Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: implications for Parkinson’s disease. Acta Neuropathol 116:47–55

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Phillips K, Wielgus AR, Liu J, Albertini A, Zucca F, Faust R, Qian S, Miller D (2011) Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson’s disease. Neurotox Res 19:68–72

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Petrosyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrosyan, T.R., Chavushyan, V.A. & Hovsepyan, A.S. Bacterial melanin increases electrical activity of neurons in Substantia Nigra pars compacta. J Neural Transm 121, 259–265 (2014). https://doi.org/10.1007/s00702-013-1095-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-013-1095-9

Keywords

Navigation