Skip to main content
Log in

Effects of gender and age on serum concentrations of antidepressants under naturalistic conditions

  • Psychiatry and Preclinical Psychiatric Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Therapeutic drug monitoring (TDM) data of antidepressant drugs are often evaluated using homogeneous samples of selected individuals without psychiatric or somatic comorbidity. These data may have limitations in transferability to everyday clinical practice. Hence, studies under naturalistic conditions are important to clarify the full clinical relevance of TDM of antidepressants. TDM analyses were retrospectively evaluated for a 3-year period from 2008 to 2010. The influence of gender and age on dose-corrected serum concentrations of antidepressants was examined in a standard clinical setting. 693 TDM analyses of amitriptyline and nortriptyline (AMI + NOR), 160 of citalopram (CIT), 152 of clomipramine and N-clomipramine (CLO + N-CLO), 272 of doxepine and N-doxepine (DOX + N-DOX), 359 of escitalopram (ESC), 198 of fluoxetine and N-fluoxetine (FLU + N-FLU), 92 of maprotiline (MAP), 888 of mirtazapine (MIR), and 77 of sertraline (SER) remained in the sample. Females had significantly higher dose-corrected serum concentrations of AMI + NOR (32 %), CIT (29 %), DOX + N-DOX (29 %), and MIR (20 %), and patients older than 60 years had significantly higher dose-corrected serum concentrations of AMI + NOR (21 %), CIT (40 %), DOX + N-DOX (48 %), MAP (46 %), MIR (24 %), and SER (67 %). Comparing the two extreme groups, females >60 years showed a remarkably higher dose-corrected serum concentration of AMI + NOR (52 %), CIT (78 %), DOX + N-DOX (86 %), and MIR (41 %) in contrast to males ≤60 years. Gender and age have a significant influence on the serum concentrations of different antidepressant drugs, and additive effects must be considered. TDM is recommended to reduce the risk of adverse effects due to supratherapeutic serum levels, also in a naturalistic clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexanderson B, Evans DA, Sjoqvist F (1969) Steady-state plasma levels of nortriptyline in twins: influence of genetic factors and drug therapy. Br Med J 4:764–768

    Article  CAS  PubMed  Google Scholar 

  • Aravagiri M, Teper Y, Marder SR (1999) Pharmacokinetics and tissue distribution of olanzapine in rats. Biopharm Drug Dispos 20:369–377

    Article  CAS  PubMed  Google Scholar 

  • Balant-Gorgia EA, Balant LP (1995) Therapeutic drug monitoring. Relevance during the drug treatment of psychiatric disorders. CNS Drugs 4:432–453

    Article  CAS  Google Scholar 

  • Baumann P, Hiemke C, Ulrich S, Eckermann G, Gaertner I, Gerlach M, Kuss HJ, Laux G, Müller-Oerlinghausen B, Rao ML, Riederer P, Zernig G (2004) The AGNP-TDM expert group consensus guidelines: therapeutic drug monitoring in psychiatry. Pharmacopsychiatry 37:1–23

    Google Scholar 

  • Bengtsson F (2006) Therapeutic drug monitoring of psychotropic drugs. TDM “nouveau”. Ther Drug Monit 26:145–151

    Article  Google Scholar 

  • Bertilsson L, Mellström B, Sjökvist F, Martenson B, Asberg M (1981) Slow hydroxylation of nortriptyline and concomitant poor debrisoquine hydroxylation: clinical implications. Lancet 339:560–561

    Article  Google Scholar 

  • Billups SJ, Delate T, Dugan D (2009) Evaluation of risk factors for elevated tricyclic antidepressant plasma concentrations. Pharmacoepidemiol Drug Saf 18:253–257

    Article  CAS  PubMed  Google Scholar 

  • Brøsen K, Naranjo CA (2001) Review of pharmacokinetic and pharmacodynamic interaction studies with citalopram. Eur Neuropsychopharmacol 11:275–283

    Article  PubMed  Google Scholar 

  • Carrasco-Portugal M, Flores-Murrieta FJ (2011) Gender differences in the pharmacokinetics of oral drugs. Pharmacol Pharm 2:31–41

    Google Scholar 

  • Donoghue J, Taylor DM (2000) Suboptimal use of antidepressants in the treatment of depression. CNS Drugs 13:365–383

    Article  CAS  Google Scholar 

  • Ereshefsky L (1996) Drug–drug interactions involving antidepressants: focus on venlafaxine. J Clin Psychopharmacol 16:37S–50S

    Article  CAS  PubMed  Google Scholar 

  • Glotzbach RK, Preskorn SH (1982) Brain concentrations of tricyclic antidepressants: single-dose kinetics and relationship to plasma concentrations in chronically dosed rats. Psychopharmacology 78:25–27

    Article  CAS  PubMed  Google Scholar 

  • Gross AS (2001) Best practice in therapeutic drug monitoring. Br J Clin Pharmacol 52:5S–10S

    Article  PubMed  Google Scholar 

  • Gründer G, Hiemke C, Paulzen M, Veselinovic T, Vernaleken I (2011) Therapeutic plasma concentrations of antidepressants and antipsychotics: lessons from PET imaging. Pharmacopsychiatry 44:236–248

    Article  PubMed  Google Scholar 

  • Hiemke C (1995) Therapeutisches drug monitoring von antidepressiva und neuroleptika methodische voraussetzungen. Psychopharmakotherapie 2:21–23

    Google Scholar 

  • Hiemke C, Härtter S, Weigmann H (2000) Therapeutisches Drug Monitoring. In: Gastpar M, Manger M (eds) Laboruntersuchungen in der psychiatrischen Routine. Thieme, Stuttgart, pp 106–133

    Google Scholar 

  • Hiemke C, Sachse J, Köller J, Weigmann H, Härtter S (2003) HPLC with column-switching for therapeutic monitoring of psychoactive drugs. Clin Lab 27:26–27

    Google Scholar 

  • Hiemke C, Baumann P, Bergemann N, Conca A, Dietmaier O, Egberts K, Fric M, Gerlach M, Greiner C, Gründer G, Haen E, Havemann-Reinecke U, Jaquenoud Sirot E, Kirchherr H, Laux G, Lutz UC, Messer T, Müller MJ, Pfuhlmann B, Rambeck B, Riederer P, Schoppek B, Stingl J, Uhr M, Ulrich S, Waschgler R, Zernig G (2011) AGNP consensus guidelines for therapeutic drug monitoring in psychiatry: update 2011. Pharmacopsychiatry 44:195–235

    Article  Google Scholar 

  • Hirschfeld RM, Montgomery SA, Aguglia E, Amore M, Delgado PL, Gastpar M, Hawley C, Kasper S, Linden M, Massana J, Mendlewicz J, Möller HJ, Nemeroff CB, Saiz J, Such P, Torta R, Versiani M (2002) Partial response and nonresponse to antidepressant therapy: current approaches and treatment options. J Clin Psychiatry 63:826–837

    Article  CAS  PubMed  Google Scholar 

  • Hollister LE (1982) Serum concentrations of tricyclic antidepressants in clinical practice. J Clin Psychiatry 43:66–69

    CAS  PubMed  Google Scholar 

  • Hunt CM, Westerkam WR, Stave GM (1992) Effect of age and gender on the activity of human hepatic CYP3A. Biochem Pharmacol 44:275–283

    Article  CAS  PubMed  Google Scholar 

  • Kaye CM, Haddock RE, Langley PF, Mellows G, Tasker TCG, Zussman BD, Greb WH (1989) A review of the metabolism and pharmacokinetics of paroxetine in man. Acta Psychiatr Scand S350:60–75

    Article  Google Scholar 

  • Klotz U (2009) Pharmacokinetics and drug metabolism in the elderly. Drug Metab Rev 41:67–76

    Article  CAS  PubMed  Google Scholar 

  • Kunik ME, Pollock BG, Perel JM, Altieri L (1994) Clomipramine in the elderly: tolerance and plasma levels. J Geriatr Psychiatry Neurol 7:139–143

    CAS  PubMed  Google Scholar 

  • Laux G, Riederer P (1992) Plasmaspiegelbestimmung von Psychopharmaka: Therapeutisches Drug Monitoring. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Leinonen E, Lepola U, Koponen H, Kinnunen I (1996) The effect of age and concomitant treatment with other psychoactive drugs on serum concentrations of citalopram measured with a nonenantioselective method. Ther Drug Monit 18:111–117

    Article  CAS  PubMed  Google Scholar 

  • Lundmark J, Scheel Thomsen I, Fjord-Larsen T, Manniche PM, Mengel H, Moller-Nielsen EM, Pauser H, Walinder J (1989) Paroxetine: pharmacokinetic and antidepressant effect in the elderly. Acta Psychiatr Scand 80:76–80

    Article  Google Scholar 

  • Lundmark J, Reis M, Bengtsson F (2000) Therapeutic drug monitoring of sertraline: variability factors as displayed in a clinical setting. Ther Drug Monit 22:446–454

    Article  CAS  PubMed  Google Scholar 

  • Mann K, Hiemke C, Schmidt LG, Bates DW (2006) Appropriateness of therapeutic drug monitoring for antidepressants in routine psychiatric inpatient care. Ther Drug Monit 28:83–88

    Article  PubMed  Google Scholar 

  • Meyer-Barner M, Meineke I, Schreeb KH, Gleiter CH (2002) Pharmacokinetics of doxepin and desmethyldoxepin: an evaluation with the population approach. Eur J Clin Pharmacol 58:253–257

    Article  CAS  PubMed  Google Scholar 

  • Mitchell PB (2001) Therapeutic drug monitoring of psychotropic medications. Br J Clin Pharmacol 52:45S–54S

    Article  CAS  PubMed  Google Scholar 

  • Müller M, Dragicevic A, Fric M, Gaertner I, Grasmader K, Hartter S, Hermann E, Kuss HJ, Laux G, Oehl W, Rao ML, Rollmann N, Weigmann H, Weber-Labonte M, Hiemke C (2003) Therapeutic drug monitoring of tricyclic antidepressants: how does it work under clinical conditions? Pharmacopsychiatry 36:98–104

    Article  PubMed  Google Scholar 

  • Pfuhlmann B, Gerlach M, Burger R, Gonska S, Unterecker S, Jabs B, Riederer P, Deckert J (2007) Therapeutic drug monitoring of tricyclic antidepressants in everyday clinical practice. J Neural Transm Suppl 72:287–296

    Article  CAS  PubMed  Google Scholar 

  • Preskorn SH, Fast GA (1991) Therapeutic drug monitoring for antidepressants: efficacy, safety, and cost effectiveness. J Clin Psychiatry 52S:23–33

    Google Scholar 

  • Preskorn S, Patroneva A, Silman H, Jiang Q, Isler JA, Burczynski ME, Ahmed S, Paul J, Nichols AI (2009) Comparison of the pharmacokinetics of venlafaxine extended release and desvenlafaxine in extensive and poor cytochrome P450 2D6 metabolizers. J Clin Psychopharmacol 29:39–43

    Article  PubMed  Google Scholar 

  • Rao ML, Deister A, Laux G, Staberock U, Höflich G, Möller HJ (1996) Low serum levels of tricyclic antidepressants in amitriptyline- and doxepin-treated inpatients with depressive syndromes are associated with nonresponse. Pharmacopsychiatry 29:97–102

    Article  CAS  PubMed  Google Scholar 

  • Reis M, Aberg-Wistedt A, Agren H, Höglund P, Akerblad A, Bengtsson F (2004) Serum disposition of sertraline, N-desmethylsertraline and paroxetine: a pharmacokinetic evaluation of repeated drug concentration measurements during 6 months of treatment for major depression. Hum Psychopharmacol 19:283–291

    Article  CAS  PubMed  Google Scholar 

  • Reis M, Cherma MD, Carlsson B, Bengtsson F (2007) Therapeutic drug monitoring of escitalopram in an outpatient setting. Ther Drug Monit 29:758–766

    Article  CAS  PubMed  Google Scholar 

  • Reis M, Aamo T, Spigset O, Ahlner J (2009) Serum concentrations of antidepressant drugs in a naturalistic setting: compilation based on a large therapeutic drug monitoring database. Ther Drug Monit 31:42–56

    Article  CAS  PubMed  Google Scholar 

  • Richelson E (1997) Pharmacokinetic drug interactions of new antidepressants: a review of the effects on the metabolism of other drugs. Mayo Clin Proc 72:835–847

    Article  CAS  PubMed  Google Scholar 

  • Ronfeld RA, Tremaine LM, Wilner KD (1997) Pharmacokinetics of sertraline and its N-dimethyl metabolite in elderly and young male and female volunteers. Clin Pharmacokinet 32(S1):22–30

    Article  CAS  PubMed  Google Scholar 

  • Schwartz JB (2007) The current state of knowledge on age, sex, and their interactions on clinical pharmacology. Clin Pharmacol Ther 82:87–96

    Article  CAS  PubMed  Google Scholar 

  • Soldin OP, Mattison DR (2009) Sex differences in pharmacokinetics and pharmacodynamics. Clin Pharmacokinet 48:143–157

    Article  CAS  PubMed  Google Scholar 

  • Tonkin AL, Bochner F (1994) Therapeutic drug monitoring and patient outcome. Clin Pharmacokinet 27:169–174

    Article  CAS  PubMed  Google Scholar 

  • Ulrich S, Läuter J (2002) A comprehensive survey of the relationship between serum concentration and therapeutic effect of amitriptyline in depression. Clin Pharmacokin 41:853–876

    Article  CAS  Google Scholar 

  • Ulrich S, Northoff G, Wurthmann C, Partscht G, Pester U, Herscu H, Meyer FP (2001) Serum levels of amitriptyline and therapeutic effect in moderate to severely, non-delusional depressed inpatients: a therapeutic window relationship. Pharmacopsychiatry 34:33–40

    Article  CAS  PubMed  Google Scholar 

  • Unterecker S, Hiemke C, Greiner C, Haen E, Jabs B, Deckert J, Pfuhlmann B (2012) The effect of age, sex, smoking and co-medication on serum levels of venlafaxine and O-desmethyl-venlafaxine under naturalistic conditions. Pharmacopsychiatry 45:229–235

    Article  CAS  PubMed  Google Scholar 

  • Veefkind AH, Haffmans PM, Hoencamp E (2000) Venlafaxine serum levels and CYP2D6 genotype. Ther Drug Monit 22:202–208

    Article  CAS  PubMed  Google Scholar 

  • Vuille F, Amey M, Baumann P (1991) Use of serum level monitoring of antidepressants in clinical practice. Pharmacopsychiatry 24:190–195

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to the staff of the TDM laboratory of the Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, R. Burger, M. Burger, R. Schreiner and M. Weyer.

Conflict of interest

S.U. has received travel and accommodation expenses by Astra Zeneca, Pfizer and Janssen. P.R. has received honorarium from Merz-Pharmaceuticals GmbH. J.D. has received speaker’s honoraria by Janssen, Bristol-Myers Squibb, Wyeth, Lundbeck, Astra Zeneca, and Pfizer and grant support by Medice. B.P. has received speaker’s honoraria by Astra Zeneca, Janssen, and Pfizer. No other relationships or activities that could appear to have influenced the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Unterecker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unterecker, S., Riederer, P., Proft, F. et al. Effects of gender and age on serum concentrations of antidepressants under naturalistic conditions. J Neural Transm 120, 1237–1246 (2013). https://doi.org/10.1007/s00702-012-0952-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-012-0952-2

Keywords

Navigation