Skip to main content
Log in

Rasagiline and selegiline, inhibitors of type B monoamine oxidase, induce type A monoamine oxidase in human SH-SY5Y cells

  • Neurology and Preclinical Neurological Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Type B monoamine oxidase (MAO-B) is proposed to be involved in the pathogenesis of neurodegenerative disorders, such as Parkinson’s disease, through oxidative stress and synthesis of neurotoxins. MAO-B inhibitors, rasagiline and selegiline [(−)deprenyl], protect neuronal cells by direct intervention in mitochondrial death signaling and induction of pro-survival Bcl-2 and neurotrophic factors. Recently, type A MAO (MAO-A) was found to mediate the induction of anti-apoptotic Bcl-2 by rasagiline, whereas MAO-A increases in neuronal death and also serves as a target of neurotoxins. These controversial results suggest that MAO-A may play a decisive role in neuronal survival and death. This paper reports that rasagiline and selegiline increased the mRNA, protein and catalytic activity of MAO-A in SH-SY5Y cells. Silencing MAO-A expression with small interfering (si)RNA suppressed rasagiline-dependent MAO-A expression, but MAO-B overexpression in SH-SY5Y cells did not affect, suggesting that MAO-A, not MAO-B, might be associated with MAO-A upregulation. Rasagiline reduced R1, a MAO-A specific repressor, but selegiline did not. Mithramycin-A, an inhibitor of Sp1 binding, and actinomycin-D, a transcriptional inhibitor, reduced the rasagiline-dependent upregulation of MAO-A mRNA, indicating that rasagiline induced MAO-A transcriptionally through R1-Sp1 pathway, whereas selegiline by another non-defined pathway. These results are discussed in relation to the role of MAO-A and these MAO-B inhibitors in neuronal death and neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MAO:

Monoamine oxidase

MAO-A and MAO-B:

Type A and B MAO

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

SiRNA:

Small interfering RNA

References

  • Abu-Raya S, Tabakman R, Blaugrund E, Trembovler V, Lazarovici P (2002) Neuroprotective and neurotoxic effects of monoamine oxidase-B inhibitors and derived metabolites under ischemia in PC12 cells. Eur J Pharmacol 434:109–116

    Article  PubMed  CAS  Google Scholar 

  • Akao Y, Maruyama W, Shimizu S, Yi H, Shamoto-Nagai M, Youdim MB, Tsujimoto Y, Naoi M (2002) Mitochondrial permeability transition mediates apoptosis induced by N-methyl(R)salsolinol, an endogenous neurotoxin, and its inhibited by Bcl-2 and rasagiline, N-propargyl-1(R)-aminoindan. J Neurochem 82:913–923

    Article  PubMed  CAS  Google Scholar 

  • Bar Am O, Amit T, Youdim MBH (2004) Contracting neuroprotective and neurotoxic action of respective metabolites of anti-Parkinson drugs rasagiline and selegiline. Neurosci Lett 355:169–172

    Article  PubMed  Google Scholar 

  • Bar-Am O, Weinreb O, Amit T, Youdim MBH (2010) The neuroprotective mechanism of 1-(R)-aminoindan, the major metabolite of anti-parkinsonian drug rasagiline. J Neurochem 112:1131–1137

    Article  PubMed  CAS  Google Scholar 

  • Bortolato M, Chen K, Shih JC (2008) Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Delivery Rev 60:1527–1533

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Li X-M, Mousseau DD (2009) Calcium alters monoamine oxidase-A parameters in human cerebellar and rat glial C6 cell extracts: possible influence by distinct signal pathways. Life Sci 85:262–268

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Ou X-M, Chen G, Choi SH, Shih JC (2005) R1, a novel repressor of the human monoamine oxidase A. J Biol Chem 280:11552–11559

    Article  PubMed  CAS  Google Scholar 

  • De Girolamo LA, Hargreaves AJ, Billett EE (2001) Protection from MPTP-induced neurotoxicity in differentiating N2a neuroblastoma cells. J Neurochem 76:650–660

    Article  PubMed  Google Scholar 

  • De Zutter GS, Davis RJ (2001) Pro-apoptotic gene expression mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Proc Natl Acad Sci USA 98:6168–6173

    Article  PubMed  Google Scholar 

  • Desagher S, Osen-Sand A, Nichols A et al (1999) Bid-induced conformational changes of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144:891–901

    Article  PubMed  CAS  Google Scholar 

  • Ebadi M, Brown-Borg H, Ren J, Sharma S, Shavali S, ReFaey HE, Carlson EC (2006) Therapeutic efficiency of selegiline in neurodegenerative disorders and neurological diseases. Curr Drug Targets 7:1513–1529

    Article  PubMed  CAS  Google Scholar 

  • Edmondson DE, Binda C, Mattevi A (2007) Structural insights into the mechanism of amine oxidation by monoamine oxidases A and B. Arch Biochem Biophys 464:269–276

    Article  PubMed  CAS  Google Scholar 

  • Egashira T, Sakai K, Sakurai M, Takayama F (2003) Calcium disodium edetate enhances type A monoamine oxidase activity in monkey brain. Biol Trace Elem Res 94:203–211

    Article  PubMed  CAS  Google Scholar 

  • Finberg JPM, Youdim MBH (2002) Pharmacological properties of the anti-Parkinson drug rasagiline; modification of endogenous brain amines, reserpine reversal, serotonergic and dopaminergic behaviours. Neuropharmacology 43:1110–1118

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald JC, Ufer C, De Girolamo LA, Kuhn H, Billet EE (2007) Monoamine oxidase-A modulates apoptotic cell death induced by staurosporine in human neuroblastoma cells. J Neurochem 103:2189–2199

    Article  PubMed  CAS  Google Scholar 

  • Heikkila RE, Manzino L, Cabbat FS, Duvoisin RN (1985) Studies on the oxidation of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by monoamine oxidase B. J Neurochem 45:1049–1054

    Article  PubMed  CAS  Google Scholar 

  • Hirano F, Tanaka H, Hirano Y, Hiramoto M, Handa H, Makino I, Scheidereit C (1998) Functional interference of Sp1 and NF-κB through the same DNA binding site. Mol Cell Biol 18:1266–1274

    PubMed  CAS  Google Scholar 

  • Hubalek F, Binda C, Ki M, Herzig Y, Sterling J, Youdim MBH, Mattevi A, Edmondson DE (2004) Inactivation of purified human recombinant monoamine oxidase A and B by rasagiline and its analogues. J Med Chem 47:1760–1768

    Article  PubMed  CAS  Google Scholar 

  • Hynson RMG, Kelly SM, Price NC, Ramsay RR (2004) Conformational changes in monoamine oxidase A in response to ligand binding or reduction. Biochim Biophys Acta 1672:60–66

    Article  PubMed  CAS  Google Scholar 

  • Inaba-Hasegawa K, Akao Y, Maruyama W, Naoi M (2012) Type A monoamine oxidase is associated with induction of neuroprotective Bcl-2 by rasagiline, an inhibitor of type B monoamine oxidase. J Neural Transm 119:405–414

    Article  PubMed  CAS  Google Scholar 

  • Konradi C, Riederer P, Youdim MB (1986) Hydrogen peroxide enhances the activity of monoamine oxidase type B but not of type-A: a pilot study. J Neural Transm Suppl 22:61–63

    PubMed  CAS  Google Scholar 

  • Kraml M (1965) A rapid microfluorometric determination of monoamine oxidase. Biochem Pharmacol 14:1684–1686

    Article  Google Scholar 

  • Lamensdorf I, Youdim MBH, Finberg JPM (1996) Effect of long-term treatment with selective monoamine oxidase A and B inhibitors on dopamine release from rat striatum in vivo. J Neurochem 67:1532–1539

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Naoi M (2012) Induction of glial cell line-derived and brain-derived neurotrophic factors by rasagiline and (−)deprenyl: a way to disease-modifying therapy? J Neural Transm. doi:10.1007/s00702-0876-x

    Google Scholar 

  • Maruyama W, Nitta A, Shamoto-Nagai M, Hirata Y, Akao Y, Youdim M, Furukawa S, Nabeshima T, Naoi M (2004) N-Propargyl-1-(R)-aminoindan, rasagiline, increases glial cell line-derived neurotrophic factor (GDNF) in neuroblastoma SH-SY5Y cells through activation of NF-κB transcription factor. Neurochem Int 44:293–400

    Article  Google Scholar 

  • Naoi M, Maruyama W (2010) Monoamine oxidase inhibitors as neuroprotective agents in age-dependent neurodegenerative disorders. Curr Pharmaceut Des 16:2799–2817

    Article  CAS  Google Scholar 

  • Naoi M, Maruyama W, Yi H, Akao Y, Yamaoka Y, Shamoto-Nagai M (2007) Neuroprotection by propargylamines in Parkinson’s disease: intracellular mechanism underlying the anti-apoptotic function and search for clinical markers. J Neural Transm Suppl 72:121–131

    Article  PubMed  CAS  Google Scholar 

  • Naoi M, Maruyama W, Inaba-Hasegawa K, Akao Y (2011) Type A monoamine oxidase regulates life and death of neurons in neurodegeneration and neuroprotection. Inter Rev Neurobiol 100:85–106

    Article  CAS  Google Scholar 

  • Ou X-M, Chen K, Shih JC (2006a) Monoamine oxidase A and repressor R1 are involved in apoptotic signaling pathway. Proc Natl Acad Sci USA 103:10923–10928

    Article  PubMed  CAS  Google Scholar 

  • Ou X-M, Chen K, Shih JC (2006b) Glucocorticoid and androgen activation of monoamine oxidase A is regulated differently by R1 and Sp1. J Biol Chem 281:21512–21525

    Article  PubMed  CAS  Google Scholar 

  • Ou X-M, Lu D, Johnson C, Chen K, Youdim MBH, Rajkowska G, Shih JC (2009) Glyceraldehyde-3-phosphate dehydrogenase-monoamine oxidase B-mediated cell death-induced by ethanol is prevented by rasagiline and 1-R-aminoindan. Neurotox Res 16:148–159

    Article  PubMed  CAS  Google Scholar 

  • Parkinson Study Group (2002) A controlled trial of rasagiline in early Parkinson disease: the TEMPO study. Arch Neurol 59:1937–1943

    Article  Google Scholar 

  • Pizzinat N, Marchal-Victorion S, Maurel A, Ordener C, Bompart G, Parini A (2003) Substrate-dependent regulation of MAO-A in rat mesangial cells: involvement of dopamine D2-like receptors. Am J Physiol Renal Physiol 284:F167–F174

    PubMed  CAS  Google Scholar 

  • Riederer P, Lachenmayer L, Laux G (2004) Clinical applications of MAO-inhibitors. Curr Med Chem 11:2033–2043

    Article  PubMed  CAS  Google Scholar 

  • Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from genes to behavior. Ann Rev Neurosci 22:197–217

    Article  PubMed  CAS  Google Scholar 

  • Shih JC, Boyang J, Chen K (2011) Transcriptional regulation and multiple functions of MAO genes. J Neural Transm 118:979–986

    Article  PubMed  CAS  Google Scholar 

  • Tazik S, Johnson S, Lu D, Johnson C, Youdim MBH, Stockmeier OuX-M (2009) Comparative neuroprotective effects of rasagiline and aminoindan with selegiline on dexamethasone-induced brain cell apoptosis. Neurosci Res 15:284–290

    Google Scholar 

  • Wang J, Edmondson DE (2011) Topological probes of monoamine oxidases A and B in rat liver mitochondria: inhibition by TEMPO-substituted pargyline analogues and inactivation by proteolysis. Biochemistry 50:2499–2505

    Article  PubMed  CAS  Google Scholar 

  • Wong WK, Ou XM, Chen K, Shih JC (2002) Activation of human monoamine oxidase B gene expression by a protein kinase C MAPK signal transduction pathway involves c-Jun and Egr-1. J Biol Chem 277:22222–22230

    Article  PubMed  CAS  Google Scholar 

  • Wu JB, Shih JC (2011) Valproic acid induces monoamine oxidase A via Akt/Forkhead Box O1 activation. Mol Pharmacol 80:714–723

    Article  PubMed  CAS  Google Scholar 

  • Yi H, Akao Y, Maruyama W, Chen K, Shih J, Naoi M (2006) Type A monoamine oxidase is the target of an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, leading to apoptosis in SH-SY5Y cells. J Neurochem 96:541–549

    Article  PubMed  CAS  Google Scholar 

  • Youdim MBH, Bakhle YS (2006) Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol 147:S287–S296

    Article  PubMed  CAS  Google Scholar 

  • Youdim MBH, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7:295–309

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Xie W, Pan T, Jankovic J, Youdim MBH, Le W (2008) Comparison of neuroprotective and neurorestorative capacities of rasagiline and selegiline against lactacystin-induced nigrostriatal dopaminergic degeneration. J Neurochem 105:1970–1978

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Grant for Longevity Sciences (21A-13, 23A-2) from the Ministry of Health, Labour and Welfare (W. M., M. N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Naoi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inaba-Hasegawa, K., Akao, Y., Maruyama, W. et al. Rasagiline and selegiline, inhibitors of type B monoamine oxidase, induce type A monoamine oxidase in human SH-SY5Y cells. J Neural Transm 120, 435–444 (2013). https://doi.org/10.1007/s00702-012-0899-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-012-0899-3

Keywords

Navigation