Skip to main content
Log in

Vesicular monoamine transporter 2 mRNA levels are reduced in platelets from patients with Parkinson’s disease

  • Movement Disorders - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Despite advances in neuroimaging, the diagnosis of idiopathic Parkinson’s disease (PD) remains clinical. The identification of biological markers for an early diagnosis is of great interest to start a neuroprotective therapy aimed at slowing, blocking or reversing the disease progression. Vesicular monoamine transporter 2 (VMAT2) sequesters cytoplasmic dopamine into synaptic vesicles for storage and release. Thus, VMAT2 impairment can regulate intra- and extracellular dopamine levels, influencing oxidative stress and neuronal death. Because in vivo imaging studies have demonstrated a VMAT2 reduction in PD patients greater than would be explained by neuronal loss alone, as an exploratory study we assessed VMAT2 mRNA and protein levels in platelets from 39 PD patients, 39 healthy subjects and 10 patients with vascular parkinsonism (VP) to identify a possible peripheral biomarker for PD. A significant reduction (p < 0.05) of VMAT2 mRNA levels was demonstrated in PD patients versus healthy controls. Patients with VP showed VMAT2 mRNA levels similar to controls. No difference in VMAT2 mRNA levels was found in untreated versus treated patients. No correlation was observed between mRNA levels and demographic or clinical characteristics. Furthermore, eight SNPs tagging the VMAT2 gene did not show effects on VMAT2 mRNA levels. Western blot analysis did not allow the quantification of VMAT2 protein expression in blood platelets. Although further studies in a greater number of cases are needed to confirm our data, the reduction in VMAT2 mRNA in platelets from PD patients suggests the existence of a systemic impairment of this transporter possibly contributing to PD pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anlauf M, Schäfer MK, Schwark T, von Wurmb-Schwark N, Brand V, Sipos B, Horny HP, Parwaresch R, Hartschuh W, Eiden LE, Klöppel G, Weihe E (2006) Vesicular monoamine transporter 2 (VMAT2) expression in hematopoietic cells and in patients with systemic mastocytosis. J Histochem Cytochem 54(2):201–213

    Article  CAS  PubMed  Google Scholar 

  • Caudle WM, Richardson JR, Wang MZ, Taylor TN, Guillot TS, McCormack AL, Colebrooke RE, Di Monte DA, Emson PC, Miller GW (2007) Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J Neurosci 27(30):8138–8148

    Article  CAS  PubMed  Google Scholar 

  • Chen MK, Kuwabara H, Zhou Y, Adams RJ, Brasić JR, McGlothan JL, Verina T, Burton NC, Alexander M, Kumar A, Wong DF, Guilarte TR (2008) VMAT2 and dopamine neuron loss in a primate model of Parkinson’s disease. J Neurochem 105(1):78–90

    Article  CAS  PubMed  Google Scholar 

  • Christiansen L, Tan Q, Iachina M, Bathum L, Kruse TA, McGue M, Christensen K (2007) Candidate gene polymorphisms in the serotonergic pathway: influence on depression symptomatology in an elderly population. Biol Psychiatry 61(2):223–230

    Article  CAS  PubMed  Google Scholar 

  • Colebrooke RE, Humby T, Lynch PJ, McGowan DP, Xia J, Emson PC (2006) Age-related decline in striatal dopamine content and motor performance occurs in the absence of nigral cell loss in a genetic mouse model of Parkinson’s disease. Eur J Neurosci 24(9):2622–2630

    Article  PubMed  Google Scholar 

  • DelleDonne A, Klos KJ, Fujishiro H, Ahmed Z, Parisi JE, Josephs KA, Frigerio R, Burnett M, Wszolek ZK, Uitti RJ, Ahlskog JE, Dickson DW (2008) Incidental Lewy body disease and preclinical Parkinson disease. Arch Neurol 65(8):1074–1080

    Article  PubMed  Google Scholar 

  • Dluzen DE, Bhatt S, McDermott JL (2008) Differences in reserpine-induced striatal dopamine output and content between female and male mice: implications for sex differences in vesicular monoamine transporter 2 function. Neuroscience 154(4):1488–1496

    Article  CAS  PubMed  Google Scholar 

  • Gelb DJ, Oliver E, Gilman S (1999) Diagnostic criteria for Parkinson disease. Arch Neurol 56:33–39

    Article  CAS  PubMed  Google Scholar 

  • Gibb WR, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 51(6):745–752

    Article  CAS  PubMed  Google Scholar 

  • Gilman S, Koeppe RA, Adams KM, Junck L, Kluin KJ, Johnson-Greene D, Martorello S, Heumann M, Bandekar R (1998) Decreased striatal monoaminergic terminals in severe chronic alcoholism demonstrated with (+)[11C]dihydrotetrabenazine and positron emission tomography. Ann Neurol 44(3):326–333

    Article  CAS  PubMed  Google Scholar 

  • Glatt CE, Wahner AD, White DJ, Ruiz-Linares A, Ritz B (2006) Gain-of-function haplotypes in the vesicular monoamine transporter promoter are protective for Parkinson disease in women. Hum Mol Genet 15(2):299–305

    Article  CAS  PubMed  Google Scholar 

  • Guillot TS, Miller GW (2009) Protective actions of the vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons. Mol Neurobiol 39(2):149–170

    Article  CAS  PubMed  Google Scholar 

  • Harrington KA, Augood SJ, Kingsbury AE, Foster OJ, Emson PC (1996) Dopamine transporter (DAT) and synaptic vesicle amine transporter (VMAT2) gene expression in the substantia nigra of control and Parkinson’s disease. Brain Res Mol Brain Res 36:157–162

    Article  CAS  PubMed  Google Scholar 

  • Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442

    CAS  PubMed  Google Scholar 

  • Klos KJ, Ahlskog JE, Josephs KA, Apaydin H, Parisi JE, Boeve BF, DeLucia MW, Dickson DW (2006) Alpha-synuclein pathology in the spinal cords of neurologically asymptomatic aged individuals. Neurology 66(7):1100–1102

    Article  CAS  PubMed  Google Scholar 

  • Lee CS, Samii A, Sossi V, Ruth TJ, Schulzer M, Holden JE, Wudel J, Pal PK, de la Fuente-Fernandez R, Calne DB, Stoessl AJ (2000) In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 47(4):493–503

    Article  CAS  PubMed  Google Scholar 

  • Lesch KP, Gross J, Wolozin BL, Murphy DL, Riederer P (1993) Extensive sequence divergence between the human and rat brain vesicular monoamine transporter: possible molecular basis for species differences in the susceptibility to MPP+. J Neural Transm Gen Sect 93:75–82

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Walther D, Yu XY, Li S, Drgon T, Uhl GR (2005) SLC18A2 promoter haplotypes and identification of a novel protective factor against alcoholism. Hum Mol Genet 14(10):1393–1404

    Article  CAS  PubMed  Google Scholar 

  • Little KY, Krolewski DM, Zhang L, Cassin BJ (2003) Loss of striatal vesicular monoamine transporter protein (VMAT2) in human cocaine users. Am J Psychiatry 160(1):47–55

    Article  PubMed  Google Scholar 

  • Mooslehner KA, Chan PM, Xu W, Liu L, Smadja C, Humby T, Allen ND, Wilkinson LS, Emson PC (2001) Mice with very low expression of the vesicular monoamine transporter 2 gene survive into adulthood: potential mouse model for parkinsonism. Mol Cell Biol 21(16):5321–5331

    Article  CAS  PubMed  Google Scholar 

  • Schwab SG, Franke PE, Hoefgen B, Guttenthaler V, Lichtermann D, Trixler M, Knapp M, Maier W, Wildenauer DB (2005) Association of DNA polymorphisms in the synaptic vesicular amine transporter gene (SLC18A2) with alcohol and nicotine dependence. Neuropsychopharmacology 30(12):2263–2268

    Article  CAS  PubMed  Google Scholar 

  • Schwartz K, Iancu I, Stryjer R, Chelben J, Kotler M, Weizman A, Rehavi M (2005) Reduced platelet vesicular monoamine transporter density in smoking schizophrenia patients. Eur Neuropsychopharmacol 15(5):557–561

    Article  CAS  PubMed  Google Scholar 

  • Taylor TN, Caudle WM, Shepherd KR, Noorian A, Jackson CR, Iuvone PM, Weinshenker D, Greene JG, Miller GW (2009) Nonmotor symptoms of Parkinson’s disease revealed in an animal model with reduced monoamine storage capacity. J Neurosci 29(25):8103–8113

    Article  CAS  PubMed  Google Scholar 

  • Zijlmans JC, Daniel SE, Hughes AJ, Révész T, Lees AJ (2004) Clinicopathological investigation of vascular parkinsonism, including clinical criteria for diagnosis. Mov Disord 19(6):630–640

    Article  PubMed  Google Scholar 

  • Zubieta JK, Taylor SF, Huguelet P, Koeppe RA, Kilbourn MR, Frey KA (2001) Vesicular monoamine transporter concentrations in bipolar disorder type I, schizophrenia, and healthy subjects. Biol Psychiatry 49(2):110–116

    Article  CAS  PubMed  Google Scholar 

  • Zucker M, Weizman A, Rehavi M (2001) Characterization of high-affinity [3H]TBZOH binding to the human platelet vesicular monoamine transporter. Life Sci 69(19):2311–2317

    Article  CAS  PubMed  Google Scholar 

  • Zucker M, Aviv A, Shelef A, Weizman A, Rehavi M (2002) Elevated platelet vesicular monoamine transporter density in untreated patients diagnosed with major depression. Psychiatry Res 112(3):251–256

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Ministero del Lavoro, della Salute e delle Politiche Sociali, Programma Strategico 2007—Convenzione n. 97.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gessica Sala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sala, G., Brighina, L., Saracchi, E. et al. Vesicular monoamine transporter 2 mRNA levels are reduced in platelets from patients with Parkinson’s disease. J Neural Transm 117, 1093–1098 (2010). https://doi.org/10.1007/s00702-010-0446-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0446-z

Keywords

Navigation