Skip to main content

Advertisement

Log in

Inflammation induced neurological handicap processes in multiple sclerosis: new insights from preclinical studies

  • Basic Neurosciences, Genetics and Immunology - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is described as originating from incompletely explained neuroinflammatory processes, dysfunction of neuronal repair mechanisms and chronicity of inflammation events. Blood-borne immune cell infiltration and microglia activation are causing both neuronal destruction and myelin loss, which are responsible for progressive motor deficiencies, organic and cognitive dysfunctions. MRI as a non-invasive imaging method offers various ways to visualise de- and remyelination, neuronal loss, leukocyte infiltration, blood–brain barrier modification and new sensors are emerging to detect inflammatory lesions at an early stage. We describe studies performed on experimental autoimmune encephalomyelitis (EAE) animal models of MS that shed new light on mechanisms of functional impairments to understand the neurological handicap in MS. We focus on examples of neuroinflammation-mediated inhibition of CNS repair involving adult neurogenesis in the sub-ventricular zone and hippocampus and such experimentally observed inhibitions could reflect deficient plasticity and activation of compensatory mechanisms in MS. In parallel with cognitive decline, organic deficits such as bladder dysfunction are described in most of MS patients. Neuropharmacological interventions, electrical stimulation of nerves, MRI and histopathology follow-up studies helped in understanding the operating events to remodel the neurological networks and to compensate the inflammatory lesions both in spinal cord and in cortical regions. At the molecular level, the local production of reactive products is a well-described phenomenon: oxidative species disturb cellular physiology and generate new molecular epitopes that could further promote immune reactions. The translational research from EAE animal models to MS patient cohorts helps in understanding the mechanisms of the neurological handicap and in development of new therapeutic concepts in MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboul-Enein F, Rauschka H, Kornek B, Stadelmann C, Stefferl A, Brück W, Lucchinetti C, Schmidbauer M, Jellinger K, Lassmann H (2003) Preferential loss of myelin-associated glycoprotein reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases. J Neuropath Exp Neuol 62:25–33

    CAS  Google Scholar 

  • Abrous DN, Koehl M, Le Moal M (2005) Adult neurogenesis: from precursors to network and physiology. Physiol Rev 85:523–569

    Article  PubMed  CAS  Google Scholar 

  • Al-Izki S, Pryce G, Giovannoni G, Baker D (2009) Evaluating potential therapies for bladder dysfunction in a mouse model of multiple sclerosis with high-resolution ultrasonography. Mult Scler 15:795–801

    Article  PubMed  CAS  Google Scholar 

  • Bakshi R, Thompson AJ, Rocca MA, Pelletier D, Dousset V, Barkhof F, Inglese M, Guttmann CR, Horsfield MA, Filippi M (2008) MRI in multiple sclerosis: current status and future prospects. Lancet Neurol 7:615–625

    Article  PubMed  Google Scholar 

  • Belmadani A, Tran PB, Ren D, Miller RJ (2006) Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J Neurosci 26:3182–3191

    Article  PubMed  CAS  Google Scholar 

  • Bendszus M, Ladewig G, Jestaedt L, Misselwitz B, Solymosi L, Toyka K, Stoll G (2008) Gadofluorine M enhancement allows more sensitive detection of inflammatory CNS lesions than T2-w imaging: a quantitative MRI study. Brain 131:2341–2352

    Article  PubMed  Google Scholar 

  • Bhat R, Axtell R, Mitra A, Miranda M, Ch Lock, Tsien RW, Steinman L (2010) Inhibitory role for GABA in autoimmune inflammation. Proc Natl Acad Sci USA 107:2580–2585

    Article  PubMed  Google Scholar 

  • Bobholz JA, Rao SM (2003) Cognitive dysfunction in multiple sclerosis: a review of recent developments. Curr Opin Neurol 16:283–288

    Article  PubMed  Google Scholar 

  • Boelen A, Mikita J, Boiziau C, Chassande O, Fliers E, Petry KG (2009) Type 3 deiodinase expression in inflammatory spinal cord lesions in rat experimental autoimmune encephalomyelitis. Thyroid 19(12):1401–1406

    Article  PubMed  CAS  Google Scholar 

  • Bonnet MC, Deloire MS, Salort E, Dousset V, Petry KG, Brochet B, AQUISEP Study Group (2006) Evidence of cognitive compensation associated with educational level in early relapsing-remitting multiple sclerosis. J Neurol Sci 251:23–28

    Article  PubMed  Google Scholar 

  • Bonnet MC, Dilharreguy B, Allard M, Deloire MS, Petry KG, Brochet B (2009) Differential cerebellar and cortical involvement according to various attentional load: role of educational level. Hum Brain Mapp 30:1133–1143

    Article  PubMed  Google Scholar 

  • Boullerne AI, Petry KG, Meynard M, Geffard M (1995) Indirect evidence for nitric oxide involvement in multiple sclerosis by characterization of circulating antibodies directed against conjugated S-nitrosocysteine. J Neuroimmunol 60:117–124

    Article  PubMed  CAS  Google Scholar 

  • Boullerne AI, Rodriguez JJ, Touil T, Brochet B, Schmidt S, Abrous ND, Le Moal M, Pua JR, Jensen MA, Mayo W, Arnason BG, Petry KG (2002) Anti-S-nitrosocysteine antibodies are a predictive marker for demyelination in experimental autoimmune encephalomyelitis: implications for multiple sclerosis. J Neurosci 22:123–132

    PubMed  CAS  Google Scholar 

  • Boven LA, Van Meurs M, Van Zwam M, Wierenga-Wolf A, Hintzen RQ, Boot RG, Aerts JM, Amor S, Nieuwenhuis EE, Laman JD (2006) Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain 129:517–526

    Article  PubMed  Google Scholar 

  • Brenner RE, Munro PMG, Williams SCR, Bell JD, Barker GJ, Hawkins CP et al (1993) The proton NMR spectrum in acute EAE; the significance of the change in the cho:cr ratio. Magn Reson Med 29:737–745

    Article  PubMed  CAS  Google Scholar 

  • Brochet B, Dousset V (1999) Pathological correlates of magnetization transfer imaging abnormalities in animal models and humans with multiple sclerosis. Neurology 53(Suppl 3):S12–S17

    PubMed  CAS  Google Scholar 

  • Brochet B, Deloire MS, Touil T, Anne O, Caillé JM, Dousset V, Petry KG (2006) Early macrophage MRI of inflammatory lesions predicts lesion severity and disease development in relapsing EAE. Neuroimage 32:266–274

    Article  PubMed  CAS  Google Scholar 

  • Brück W, Sommermeier N, Bergmann M, Zettl U, Goebel HH, Kretzschmar HA, Lassmann H (1996) Macrophages in multiple sclerosis. Immunobiology 195:588–600

    PubMed  Google Scholar 

  • Calza L, Fernandez M, Giuliani A, Aloe L, Giardino L (2002) Thyroid hormone activates oligodendrocyte precursors and increases a myelin-forming protein and NGF content in the spinal cord during experimental allergic encephalomyelitis. Proc Natl Acad Sci USA 99:3258–3263

    Article  PubMed  CAS  Google Scholar 

  • Chen JW, Breckwoldt MO, Aikawa E, Chiang G, Weissleder R (2008) Myeloperoxidase-targeted imaging of active inflammatory lesions in murine experimental autoimmune encephalomyelitis. Brain 131:1123–1133

    Article  PubMed  Google Scholar 

  • Chintawar S, Cayrol R, Antel J, Pandolfo M, Prat A (2009) Blood–brain barrier promotes differentiation of human fetal neural precursor cells. Stem Cells 27:838–846

    Article  PubMed  Google Scholar 

  • Choi YB, Tenneti L, Le DA, Ortiz J, Bai G, Chen HS, Lipton SA (2000) Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat Neurosci 3:15–21

    Article  PubMed  CAS  Google Scholar 

  • Cianco SJ, Mutchnik SE, Rivera VM, Boone TB (2001) Urodynamic pattern changes in multiple sclerosis. Urology 57:239–245

    Article  Google Scholar 

  • Cross AH, Manning PT, Stern MK, Misko TP (1997) Evidence for the production of peroxynitrite in inflammatory CNS demyelination. J Neuroimmunol 80:121–130

    Article  PubMed  CAS  Google Scholar 

  • D’Intino G, Paradisi M, Fernandez M, Giuliani A, Aloe L, Giardino L, Calzà L (2005) Cognitive deficit associated with cholinergic and nerve growth factor down-regulation in experimental allergic encephalomyelitis in rats. Proc Natl Acad Sci USA 102:3070–3075

    Article  PubMed  CAS  Google Scholar 

  • Deloire MS, Salort E, Bonnet M, Arimone Y, Boudineau M, Amieva H, Barroso B, Ouallet JC, Pachai C, Galliaud E, Petry KG, Dousset V, Fabrigoule C, Brochet B (2005) Cognitive impairment as marker of diffuse brain abnormalities in early relapsing remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 76:519–526

    Article  PubMed  CAS  Google Scholar 

  • Deloire-Grassin MS, Brochet B, Quesson B, Delalande C, Dousset V, Canioni P, Petry KG (2000) In vivo evaluation of remyelination in rat brain by magnetization transfer imaging. J Neurol Sci 178:10–16

    Article  PubMed  CAS  Google Scholar 

  • Dousset V, Grossman RI, Ramer KN, Schnall MD, Young LH, Gonzalez-Scarano F, Lavi E, Cohen JA (1992) Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. Radiology 182:483–491

    PubMed  CAS  Google Scholar 

  • Dousset V, Delalande C, Ballarino L, Quesson B, Seilhan D, Coussemacq M, Thiaudiére E, Brochet B, Canioni P, Caillé JM (1999a) In vivo macrophage activity imaging in the central nervous system detected by magnetic resonance. Magn Reson Med 41:329–333

    Article  PubMed  CAS  Google Scholar 

  • Dousset V, Ballarino L, Delalande C, Coussemacq M, Canioni P, Petry KG, Caillé JM (1999b) Comparison of ultrasmall particles of iron oxide (USPIO)-enhanced T2-weighted, conventional T2-weighted, and gadolinium-enhanced T1-weighted MR images in rats with experimental autoimmune encephalomyelitis. AJNR Am J Neuroradiol 20:223–227

    PubMed  CAS  Google Scholar 

  • Dousset V, Gomez C, Petry KG, Delalande C, Caille JM (1999c) Dose and scanning delay using USPIO for central nervous system macrophage imaging. MAGMA 8:185–189

    Article  PubMed  CAS  Google Scholar 

  • Dousset V, Brochet B, Deloire MS, Lagoarde L, Barroso B, Caille JM, Petry KG (2006) MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium. AJNR Am J Neuroradiol 27:1000–1005

    PubMed  CAS  Google Scholar 

  • Dupret D, Revest JM, Koehl M, Ichas F, De Giorgi F, Costet P, Abrous DN, Piazza PV (2008) Spatial relational memory requires hippocampal adult neurogenesis. PLoS One 3(4):e1959

    Article  PubMed  CAS  Google Scholar 

  • Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, Gudz T, Macklin WB, Lewis DA, Fox RJ, Rudick R, Mirnics K, Trapp BD (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis. Ann Neurol 59:478–489

    Article  PubMed  CAS  Google Scholar 

  • Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158:1021–1029

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt B (2008) The blood–central nervous system barriers actively control immune cell entry into the central nervous system. Curr Pharm Des 14:1555–1565

    Article  PubMed  CAS  Google Scholar 

  • Fernandez M, Giuliani A, Pirondi S, D’Intino G, Giardino L, Aloe L, Levi-Montalcini R, Calza L (2004) Thyroid hormone administration enhances remyelination in chronic demyelinating inflammatory disease. Proc Natl Acad Sci USA 101:16363–16368

    Article  PubMed  CAS  Google Scholar 

  • Fernandez M, Paradisi M, Del VG, Giardino L, Calza L (2009) Thyroid hormone induces glial lineage of primary neurospheres derived from non-pathological and pathological rat brain: implications for remyelination-enhancing therapies. Int J Dev Neurosci 27:769–778

    Article  PubMed  CAS  Google Scholar 

  • Floris S, Blezer EL, Schreibelt G, Dopp E, van der Pol SM, Schadee-Eestermans IL, Nicolay K, Dijkstra CD, de Vries HE (2004) Blood-brain barrier permeability and monocyte infiltration in experimental allergic encephalomyelitis: a quantitative MRI study. Brain 127:616–627

    Article  PubMed  CAS  Google Scholar 

  • Franklin RJ, ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9:839–855

    Article  PubMed  CAS  Google Scholar 

  • Gao FB, Apperly J, Raff M (1998) Cell-intrinsic timers and thyroid hormone regulate the probability of cell-cycle withdrawal and differentiation of oligodendrocyte precursor cells. Dev Biol 197:54–66

    Article  PubMed  CAS  Google Scholar 

  • Graumann U, Reynolds R, Steck AJ, Schaeren-Wiemers N (2003) Molecular changes in normal appearing white matter in multiple sclerosis are characteristic of neuroprotective mechanisms against hypoxic insult. Brain Pathol 13:554–573

    Article  PubMed  CAS  Google Scholar 

  • Greco TM, Hodara R, Parastatidis I, Heijnen HF, Dennehy MK, Liebler DC, Ischiropoulos H (2006) Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells. Proc Natl Acad Sci USA 103:7420–7425

    Article  PubMed  CAS  Google Scholar 

  • Harsan LA, Steibel J, Zaremba A, Agin A, Sapin R, Poulet P, Guignard B, Parizel N, Grucker D, Boehm N, Miller RH, Ghandour MS (2008) Recovery from chronic demyelination by thyroid hormone therapy: myelinogenesis induction and assessment by diffusion tensor magnetic resonance imaging. J Neurosci 28:14189–14201

    Article  PubMed  CAS  Google Scholar 

  • Hawkins CP, Munro PM, MacKenzie F, Kesselring J, Tofts PS, du Boulay EP, Landon DN, McDonald WI (1990) Duration and selectivity of blood–brain barrier breakdown in chronic relapsing experimental allergic encephalomyelitis studied by gadolinium-DTPA and protein markers. Brain 113:365–378

    Article  PubMed  Google Scholar 

  • Hendriks JJ, Teunissen CE, de Vries HE, Dijkstra CD (2005) Macrophages and neurodegeneration. Brain Res Brain Res Rev 48:185–195

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann S, Tittgemeyer M, von Cramon DY (2007) Cognitive impairment in multiple sclerosis. Curr Opin Neurol 20:275–280

    Article  PubMed  Google Scholar 

  • Hooper DC, Spitsin S, Kean RB, Champion JM, Dickson GM, Chaudhry I, Koprowski H (1998) Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci USA 95:675–680

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Man HY, Sekine-Aizawa Y, Han Y, Juluri K, Luo H, Cheah J, Lowenstein C, Huganir RL, Snyder SH (2005) S-nitrosylation of N-ethylmaleimide sensitive factor mediates surface expression of AMPA receptors. Neuron 46:533–540

    Article  PubMed  CAS  Google Scholar 

  • Kadi L, Selvaraju R, de Lys P, Proudfoot AE, Wells TN, Boschert U (2006) Differential effects of chemokines on oligodendrocyte precursor proliferation and myelin formation in vitro. J Neuroimmunol 174:133–146

    Article  PubMed  CAS  Google Scholar 

  • Karlik SJ, Grant EA, Lee D, Noseworthy JH (1993) Gadolinium enhancement in acute and chronic-progressive experimental allergic encephalomyelitis in the guinea pig. J Magn Reson Imaging 11:685–689

    Article  Google Scholar 

  • Kerschensteiner M, Barayre FM, Buddeberg B, Merkler D, Stadelmann C, Brück W, Misgold T, Schwab ME (2004) Remodeling of axonal connections contributing to recovery in an animal model of multiple sclerosis. J Exp Med 200:1027–1038

    Article  PubMed  CAS  Google Scholar 

  • Kirk SL, Karlik SJ (2003) VEGF and vascular changes in chronic neuroinflammation. J Autoimmun 21:353–363

    Article  PubMed  CAS  Google Scholar 

  • Ladewig G, Jestaedt L, Misselwitz B, Solymosi L, Toyka K, Bendszus M, Stoll G (2009) Spatial diversity of blood–brain barrier alteration and macrophage invasion in experimental autoimmune encephalomyelitis: a comparative MRI study. Exp Neurol 220:207–211

    Article  PubMed  CAS  Google Scholar 

  • Lalive PH, Paglinawan R, Biollaz G, Kappos EA, Leone DP, Malipiero U, Relvas JB, Moransard M, Suter T, Fontana A (2005) TGF-beta-treated microglia induce oligodendrocyte precursor cell chemotaxis through the HGF-c-Met pathway. Eur J Immunol 35:727–737

    Article  PubMed  CAS  Google Scholar 

  • Lassmann H (2009) Axonal and neuronal pathology in multiple sclerosis: what have we learnt from animal models. Exp Neurol 17. doi:10.1016/j.expneurol.2009.10.009 (Epub ahead of print)

  • Lassmann H, Brück W, Lucchinetti CF (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17:210–218

    Article  PubMed  Google Scholar 

  • Leuner B, Gould E, Shors TJ (2006) Is there a link between adult neurogenesis and learning? Hippocampus 16:216–224

    Article  PubMed  Google Scholar 

  • Li J, Baud O, Vartanian T, Volpe JJ, Rosenberg PA (2005) Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci USA 102:9936–9941

    Article  PubMed  CAS  Google Scholar 

  • Lincoln NB, Radford KA (2008) Cognitive abilities as predictors of safety to drive in people with multiple sclerosis. Mult Scler 14:123–128

    Article  PubMed  CAS  Google Scholar 

  • Litwiller SE, Frohman EM, Zimmern PE (1999) Multiple sclerosis and the urologist. J Urol 161:743–757

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Diego RS, Weiner HL (2008) Novel therapeutic strategies for multiple sclerosis–a multifaceted adversary. Nat Rev Drug Discov 7:909–925

    Article  PubMed  CAS  Google Scholar 

  • Mahad DJ, Ziabreva I, Lassmann H (2008) Mitochondrial defects in acute multiple sclerosis lesions. Brain 131:1722–1735

    Article  PubMed  Google Scholar 

  • Manganas LN, Zhang X, Li Y, Hazel RD, Smith SD, Wagshul ME, Henn F, Benveniste H, Djuric PM, Enikolopov G, Maletic-Savatic M (2007) Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science 318:980–985

    Article  PubMed  CAS  Google Scholar 

  • Mathey EK, Derfuss T, Storch MK, Williams KR, Hales K, Woolley DR, Al-Hayani A, Davies SN, Rasband MN, Olsson T, Moldenhauer A, Velhin S, Hohlfeld R, Meinl E, Linington C (2007) Neurofascin as a novel target for autoantibody-mediated axonal injury. J Exp Med 204:2363–2372

    Article  PubMed  CAS  Google Scholar 

  • Matute C, Alberdi E, Domercq M, Sánchez-Gómez MV, Pérez-Samartín A, Rodríguez-Antigüedad A, Pérez-Cerdá F (2007) Excitotoxic damage to white matter. J Anat 210:693–702

    Article  PubMed  CAS  Google Scholar 

  • Mizusawa H, Igawa Y, Nishizawa O, Ichikawa M, Ito M, Andersson KE (2000) A rat model for investigation of bladder dysfunction associated with demyelinating disease resembling multiple sclerosis. Neurourol Urodyn 19:689–699

    Article  PubMed  CAS  Google Scholar 

  • Muzio L, Cavasinni F, Marinaro C, Bergamaschi A, Bergami A, Porcheri C, Cerri F, Dina G, Quattrini A, Comi G, Furlan R, Martino G (2010) Cxcl10 enhances blood cells migration in the sub-ventricular zone of mice affected by experimental autoimmune encephalomyelitis. Mol Cell Neurosci 43:268–280

    Article  PubMed  CAS  Google Scholar 

  • Namer IJ, Steibel J, Poulet P, Armspach JP, Mauss Y, Chambron J (1992) In vivo dynamic MR imaging of MBP-induced acute experimental allergic encephalomyelitis in Lewis rat. Magn Reson Med 24:325–334

    Article  PubMed  CAS  Google Scholar 

  • Nessler S, Boretius S, Stadelmann C, Bittner A, Merkler D, Hartung HP, Michaelis T, Brück W, Frahm J, Sommer N, Hemmer B (2007) Early MRI changes in a mouse model of multiple sclerosis are predictive of severe inflammatory tissue damage. Brain 130:2186–2198

    Article  PubMed  Google Scholar 

  • Noseworthy JH (1999) Progress in determining the causes and treatment of multiple sclerosis. Nature 399(Suppl):A40–A47

    PubMed  CAS  Google Scholar 

  • Oleszak EL, Zaczynska E, Bhattacharjee M, Butunoi C, Legido A, Katsetos CD (1998) Inducible nitric oxide synthase and nitrotyrosine are found in monocytes/macrophages and/or astrocytes in acute, but not in chronic, multiple sclerosis. Clin Diagn Lab Immunol 5:438–445

    PubMed  CAS  Google Scholar 

  • Oweida AJ, Dunn EA, Karlik SJ, Dekaban GA, Foster PJ (2007) Iron-oxide labeling of hematogenous macrophages in a model of experimental autoimmune encephalomyelitis and the contribution to signal loss in fast imaging employing steady state acquisition (FIESTA) images. J Magn Reson Imaging 26:144–151

    Article  PubMed  Google Scholar 

  • Pereira AC, Huddleston DE, Brickman AM, Sosunov AA, Hen R, McKhann GM, Sloan R, Gage FH, Brown TR, Small SA (2007) An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 104:5638–5643

    Article  PubMed  CAS  Google Scholar 

  • Petry KG, Boiziau C, Dousset V, Brochet B (2007) Magnetic resonance imaging of human brain macrophage infiltration. Neurotherapeutics 4:434–442

    Article  PubMed  CAS  Google Scholar 

  • Phares TW, Fabis MJ, Brimer CM, Kean RB, Hooper DC (2007) A peroxynitrite-dependent pathway is responsible for blood-brain barrier permeability changes during a central nervous system inflammatory response: TNF-alpha is neither necessary nor sufficient. J Immunol 178:7334–7343

    PubMed  CAS  Google Scholar 

  • Picard-Riera N, Decker L, Delarasse C, Goude K, Nait-Oumesmar B, Liblau R, Pham-Dinh D, van Evercooren AB (2002) Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci USA 99:13211–13216

    Article  PubMed  CAS  Google Scholar 

  • Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6:67–70

    Article  PubMed  CAS  Google Scholar 

  • Pluchino S, Martino G (2008) The therapeutic plasticity of neural stem/precursor cells in multiple sclerosis. J Neurol Sci 265:105–110

    Article  PubMed  CAS  Google Scholar 

  • Pluchino S, Muzio L, Imitola J, Deleidi M, Alfaro-Cervello C, Salani G, Porcheri C, Brambilla E, Cavasinni F, Bergamaschi A, Garcia-Verdugo JM, Comi G, Khoury SJ, Martino G (2008) Persistent inflammation alters the function of the endogenous brain stem cell compartment. Brain 131:2564–2578

    Article  PubMed  Google Scholar 

  • Qi X, Lewin AS, Sun L, Hauswirth WW, Guy J (2006) Mitochondrial protein nitration primes neurodegeneration in experimental autoimmune encephalomyelitis. J Biol Chem 281:31950–31962

    Article  PubMed  CAS  Google Scholar 

  • Radu CG, Shu CJ, Shelly SM, Phelps ME, Witte ON (2007) Positron emission tomography with computed tomography imaging of neuroinflammation in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 104:1937–1942

    Article  PubMed  CAS  Google Scholar 

  • Rausch M, Hiestand P, Baumann D, Cannet C, Rudin M (2003) MRI-based monitoring of inflammation and tissue damage in acute and chronic relapsing EAE. Magn Reson Med 50:309–314

    Article  PubMed  CAS  Google Scholar 

  • Redford EJ, Kapoor R, Smith KJ (1997) Nitric oxide donors reversibly block axonal conduction: demyelinated axons are especially susceptible. Brain 120:2149–2157

    Article  PubMed  Google Scholar 

  • Redondo C, Lopez-Toledano MA, Lobo MV, Gonzalo-Gobernado R, Reimers D, Herranz AS, Paino CL, Bazan E (2007) Kainic acid triggers oligodendrocyte precursor cell proliferation and neuronal differentiation from striatal neural stem cells. J Neurosci Res 85:1170–1182

    Article  PubMed  CAS  Google Scholar 

  • Richards TL, Alvord EC Jr, Peterson J, Cosgrove S, Petersen R, Petersen K, Heide AC, Cluff J, Rose LM (1995) Experimental allergic encephalomyelitis in non-human primates: MRI and MRS may predict the type of brain damage. NMR Biomed 8:49–58

    Article  PubMed  CAS  Google Scholar 

  • Rosas-Ballina M, Tracey KJ (2009a) Cholinergic control of inflammation. J Intern Med 265:663–679

    Article  PubMed  CAS  Google Scholar 

  • Rosas-Ballina M, Tracey KJ (2009b) The neurology of the immune system: neural reflexes regulate immunity. Neuron 64:28–32

    Article  PubMed  CAS  Google Scholar 

  • Roscoe WA, Welsh ME, Carter DE, Karlik SJ (2009) VEGF and angiogenesis in acute and chronic MOG (35–55) peptide induced EAE. J Neuroimmunol 209:6–15

    Article  PubMed  CAS  Google Scholar 

  • Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21:172–188

    Article  PubMed  Google Scholar 

  • Schoepf U, Marecos EM, Melder RJ, Jain RK, Weissleder R (1998) Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. Biotechniques 24:642–651

    PubMed  CAS  Google Scholar 

  • Scott GS, Bowman SR, Smith T, Flower RJ, Bolton C (2007) Glutamate-stimulated peroxynitrite production in a brain-derived endothelial cell line is dependent on N-methyl-d-aspartate (NMDA) receptor activation. Biochem Pharmacol 73:228–236

    Article  PubMed  CAS  Google Scholar 

  • Sicotte NL, Kern KC, Giesser BS, Arshanapalli A, Schultz A, Montag M, Wang H, Bookheimer SY (2008) Regional hippocampal atrophy in multiple sclerosis. Brain 131:1134–1141

    Article  PubMed  CAS  Google Scholar 

  • Smith KJ (2006) Axonal protection in multiple sclerosis—a particular need during remyelination? Brain 129:3147–3149

    Article  PubMed  Google Scholar 

  • Smith KJ, Lassmann H (2002) The role of nitric oxide in multiple sclerosis. Lancet Neurol 1:232–241

    Article  PubMed  CAS  Google Scholar 

  • Smith KJ, Kapoor R, Hall SM, Davies M (2001) Electrically active axons degenerate when exposed to nitric oxide. Ann Neurol 49:470–476

    Article  PubMed  CAS  Google Scholar 

  • Sun SW, Liang HF, Schmidt RE, Cross AH, Song SK (2007) Selective vulnerability of cerebral white matter in a murine model of multiple sclerosis detected using diffusion tensor imaging. Neurobiol Dis 28:30–38

    Article  PubMed  CAS  Google Scholar 

  • Touil T, Deloire-Grassin MS, Vital C, Petry KG, Brochet B (2001) In vivo damage of CNS myelin and axons induced by peroxynitrite. Neuroreport 12:3637–3644

    Article  PubMed  CAS  Google Scholar 

  • Vallejo-Illarramendi A, Domercq M, Pérez-Cerdá F, Ravid R, Matute C (2006) Increased expression and function of glutamate transporters in multiple sclerosis. Neurobiol Dis 21:154–164

    Article  PubMed  CAS  Google Scholar 

  • Vellinga MM, Oude Engberink RD, Seewann A, Pouwels PJ, Wattjes MP, van der Pol SM, Pering C, Polman CH, de Vries HE, Geurts JJ, Barkhof F (2008) Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain 131:800–807

    Article  PubMed  Google Scholar 

  • Vignes JR, Deloire MS, Petry KG, Nagy F (2007) Characterization and restoration of altered inhibitory and excitatory control of micturition reflex in experimental autoimmune encephalomyelitis in rats. J Physiol (London) 578:439–450

    Article  CAS  Google Scholar 

  • Vignes JR, Deloire M, Petry K (2009) Animal models of sacral neuromodulation for detrusor overactivity. Neurourol Urodyn 28:8–12

    Article  PubMed  Google Scholar 

  • Wang Y, Imitola J, Rasmussen S, O’Connor KC, Khoury SJ (2008) Paradoxical dysregulation of the neural stem cell pathway sonic hedgehog-Gli1 in autoimmune encephalomyelitis and multiple sclerosis. Ann Neurol 64:417–427

    Article  PubMed  CAS  Google Scholar 

  • Weber MS, Prod’homme T, Youssef S, Dunn SE, Rundle CD, Lee L, Patarroyo JC, Stüve O, Sobel RA, Steinman L, Zamvil SS (2007) Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med 13:935–943

    Article  PubMed  CAS  Google Scholar 

  • Wee Yong V, Marks S (2010) The interplay between immune and central nervous system in neuronal injury. Neurology 74(Suppl 1):S9–S16

    Article  PubMed  CAS  Google Scholar 

  • Wilson HC, Onischke C, Raine CS (2003) Human oligodendrocyte precursor cells in vitro: phenotypic analysis and differential response to growth factors. Glia 44:153–165

    Article  PubMed  Google Scholar 

  • Wolburg H, Wolburg-Buchholz K, Engelhardt B (2005) Diapedesis of mononuclear cells across cerebral venules during experimental autoimmune encephalomyelitis leaves tight junctions intact. Acta Neuropathol 109:181–190

    Article  PubMed  Google Scholar 

  • Xu S, Jordan EK, Brocke S, Bulte JW, Quigley L, Tresser N, Ostuni JL, Yang Y, McFarland HF, Frank JA (1998) Study of relapsing remitting experimental allergic encephalomyelitis SJL mouse model using MION-46L enhanced in vivo MRI: early histopathological correlation. J Neurosci Res 52:549–558

    Article  PubMed  CAS  Google Scholar 

  • Zaaraoui W, Deloire M, Merle M, Girard C, Raffard G, Biran M, Inglese M, Petry KG, Gonen O, Brochet B, Franconi JM, Dousset V (2008) Monitoring demyelination and remyelination by the use magnetization transfer imaging in the mouse brain at 9.4 T. MAGMA 21:357–362

    Article  PubMed  Google Scholar 

  • Zhang CL, Zou Y, He W, Gage FH, Evans RM (2008) A role for adult TLX-positive neural stem cells in learning and behaviour. Nature 451:1004–1007

    Article  PubMed  CAS  Google Scholar 

  • Ziehn MO, Avedisian AA, Tiwari-Woodruff S, Voskuhl RR (2010) Hippocampal CA1 atrophy and synaptic loss during experimental autoimmune encephalomyelitis, EAE. Lab Invest 90:774–786

    Article  PubMed  Google Scholar 

  • Ziv Y, Schwartz M (2008a) Orchestrating brain-cell renewal: the role of immune cells in adult neurogenesis in health and disease. Trends Mol Med 14:471–478

    Article  PubMed  CAS  Google Scholar 

  • Ziv Y, Schwartz M (2008b) Immune-based regulation of adult neurogenesis: implications for learning and memory. Brain Behav Immun 22:167–176

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We greatly acknowledge the support by INSERM, University of Bordeaux 2, CRAquitaine, ANR/ANR-TecSan (2006-15-1NanoBioImaging), ARSEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus G. Petry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petry, K.G., Brochet, B., Dousset, V. et al. Inflammation induced neurological handicap processes in multiple sclerosis: new insights from preclinical studies. J Neural Transm 117, 907–917 (2010). https://doi.org/10.1007/s00702-010-0432-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0432-5

Keywords

Navigation