Skip to main content

Advertisement

Log in

Alteration of inhibitory circuits in the somatosensory cortex of Ts65Dn mice, a model for Down’s syndrome

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Down’s syndrome (DS), with an incidence of one in 800 live births, is the most common genetic disorder associated with mental retardation. This trisomy on chromosome 21 induces a variable phenotype in which the only common feature is the presence of mental retardation. The neural mechanisms underlying mental retardation might include defects in the formation of neuronal networks and neural plasticity. DS patients have alterations in the morphology, the density and the distribution of dendritic spines in the pyramidal neurons of the cortex. Our hypothesis is that the deficits in dendritic arborization observed in the principal neurons of DS patients and Ts65Dn mice (a model for DS that mimics most of the structural alterations observed in humans) may be mediated to some extent by changes in their inhibitory inputs. Different types of interneurons control different types of inhibition. Therefore, to understand well the changes in inhibition in DS, it is necessary to study the different types of interneurons separately. We have studied the expression of synaptophysin, Glutamic acid decarboxylase-67 (GAD-67) and calcium-binding protein-expressing cells in the primary somatosensory cortex of 4–5 month old Ts65Dn mice. We have observed an increment of GAD67 immunoreactivity that is related mainly to an increment of calretinin-immunoreactive cells and among them the ones with bipolar morphology. Since there is a propensity for epilepsy in DS patients, this increase in interneurons might reflect an attempt by the system to block overexcitation rather than an increment in total inhibition and could explain the deficit in interneurons and principal cells observed in elderly DS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson SA, Kaznowski CE, Horn C, Rubenstein JL, McConnell SK (2002) Distinct origins of neocortical projection neurons and interneurons in vivo. Cereb Cortex 12:702–709

    Article  PubMed  Google Scholar 

  • Becker LE, Armstrong DL, Chan F (1986) Dendritic atrophy in children with Down’s syndrome. Ann Neurol 20:520–526

    Article  CAS  PubMed  Google Scholar 

  • Belichenko PV, Masliah E, Kleschevnikov AM, Villar AJ, Epstein CJ, Salehi A, Mobley WC (2004) Synaptic structural abnormalities in the Ts65Dn mouse model of Down syndrome. J Comp Neurol 480(3):281–298

    Article  PubMed  Google Scholar 

  • Belichenko PV, Kleschevnikov AM, Salehi A, Epstein CJ, Mobley WC (2007) Synaptic and cognitive abnormalities in mouse models of Down syndrome: exploring genotype-phenotype relationship. J Comp Neurol 504:329–345

    Article  CAS  PubMed  Google Scholar 

  • Belichenko PV, Kleschevnikov AM, Masliah E, Wu C, Takimoto-kimura R, Salehi A, Mobley W (2009) Excitatory-inhibitory relationship in the fascia dentate in the Ts65Dn mouse model of Down syndrome. J Comp Neurol 512:453–466

    Article  PubMed  Google Scholar 

  • Berbel P, Marco P, Cerezo JR, DeFelipe J (1996) Distribution of parvalbumin immunoreactivity in the neocortex of hypothyroid adult rats. Neurosci Lett 204:65–68

    Article  CAS  PubMed  Google Scholar 

  • Caputi A, Rozov A, Blatow M, Monyer H (2009) Two calretinin-positive GABAergic cell types in layer 2/3 of the mouse neocortex provide different forms of inhibition. Cereb Cortex 19:1345–1359

    Article  PubMed  Google Scholar 

  • Cauli B, Audinat E, Lambolez B, Angulo MC, Ropert N, Tsuzuki K, Hestrin S, Rossier J (1997) Molecular and physiological diversity of cortical nonpyramidal cells. J Neurosci 17(10):3894–3906

    CAS  PubMed  Google Scholar 

  • Conde F, Lund JS, Jacobowitz DM, Baimbridge KG, Lewis DA (1994) Local circuit neurons immunoreactive for calretinin, calbindin D-28k or parvalbumin in monkey prefrontal cortex: distribution and morphology. J Comp Neurol 341:95–116

    Article  CAS  PubMed  Google Scholar 

  • Costa AC, Walsh K, Davisson MT (1999) Motor dysfunction in a mouse model for Down syndrome. Physiol Behav 68:211–220

    Article  CAS  PubMed  Google Scholar 

  • Dierssen M, Ramakers GJ (2006) Dendritic pathology in mental retardation from molecular genetics to neurobiology. Genes Brain Behav 5(Suppl 2):48–60

    Article  CAS  PubMed  Google Scholar 

  • Dierssen M, Benavides-Piccione R, Martinez-Cue C, Estivill X, Florez J, Elston GN, DeFelipe J (2003) Alterations of neocortical pyramidal cell phenotype in the Ts65Dn mouse model of Down syndrome: effects of environmental enrichment. Cereb Cortex 13:758–764

    Article  CAS  PubMed  Google Scholar 

  • Eastwood SL, Harrison PJ (2001) Synaptic pathology in the anterior cingulated cortex in schizophrenia and mood disorders: a review and a Western blot study of synaptophysin, Gap-43 and the complexins. Brain Res Bull 55:569–578

    Article  CAS  PubMed  Google Scholar 

  • Escorihuela RM, Fernández-Teruel A, Vallina IF, Baamonde C, Lumbreras MA, Dierssen M, Tobeña A, Florez J (1995) A behavioural assessment of Ts65Dn mice: a putative Down syndrome model. Neurosci Lett 199:143–146

    Article  CAS  PubMed  Google Scholar 

  • Escorihuela RM, Vallina IF, Martinez-Cue C, Baamonde C, Dierssen M, Tobeña A, Florez J, Fernández-Teruel A (1998) Impaired short- and long-term memory in Ts65Dn mice, a model for Down syndrome. Neurosci Lett 247:171–174

    Article  CAS  PubMed  Google Scholar 

  • Fernandez F, Morishita W, Zuniga E, Nguyen J, Blank M, Malenka RC, Garner CC (2007) Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat Neurosci 10:411–413

    CAS  PubMed  Google Scholar 

  • Foldy C, Aradi I, Howard A, Soltesz I (2004) Diversity beyond variance: modulation of firing rates and network coherence by GABAergic subpopulations. Eur J Neurosci 19:119–130

    Article  PubMed  Google Scholar 

  • Gabbott PL, Bacon SJ (1996) Local circuit neurons in the medial prefrontal cortex in the monkey: II, quantitative areal and laminar distributions. J Comp Neurol 364:609–636

    Article  CAS  PubMed  Google Scholar 

  • Gardiner K, Fortna A, Bechtel L, Davisson MT (2003) Mouse models of Down syndrome: how useful can they be? Comparison of the gene content of human chromosome 21 with orthologous mouse genomic regions. Gene 318:137–147

    Article  CAS  PubMed  Google Scholar 

  • Gonchar Y, Burkhalter A (1999) Connectivity of GABAergic calretinin immunoreactive neurons in rat primary visual cortex. Cereb Cortex 9:683–696

    Article  CAS  PubMed  Google Scholar 

  • Granato A (2006) Altered organization of cortical interneurons in rats exposed to ethanol during neonatal life. Brain Res 1069:23–30

    Article  CAS  PubMed  Google Scholar 

  • Holtzman DM, Santucci D, Kilbridge J, Chua-Couzens J, Fontana DJ, Daniels SE, Johnson RM, Chen K, Sun Y, Carlson E, Alleva E, Epstein CJ, Mobley WC (1996) Developmental abnormalities and age-related neurodegeneration in a mouse model of Down syndrome. Proc Natl Acad Sci USA 96:13333–13338

    Article  Google Scholar 

  • Hunter CL, Bachman D, Granholm AC (2004) Minocycline prevents cholinergic loss in a mouse model of Down’s syndrome. Ann Neurol 56:675–688

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann WE, Moser HW (2000) Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex 10:981–991

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Emson PC, Mountjoy CQ, Thornton SN, Lawson DE, Mann DM (1990) Cerebral cortical calbindin D28K and parvalbumin neurones in Down’s syndrome. Neurosci Lett 113:17–22

    Article  CAS  PubMed  Google Scholar 

  • Kurt MA, Davies DC, Kidd M, Dierssen M, Florez J (2000) Synaptic deficit in the temporal cortex of partial trisomy 16 (Ts65Dn) mice. Brain Res 858:191–197

    Article  CAS  PubMed  Google Scholar 

  • Letinic K, Zoncu R, Rakic P (2002) Origin of GABAergic neurons in the human neocortex. Nature 417:645–649

    Article  CAS  PubMed  Google Scholar 

  • Marin-Padilla M (1976) Pyramidal cell abnormalities in the motor cortex of a child with Down’s syndrome: a Golgi study. J Comp Neurol 167:63–81

    Article  CAS  PubMed  Google Scholar 

  • Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807

    Article  CAS  PubMed  Google Scholar 

  • Masliah E, Terry RD, Alford M, DeTeresa R (1990) Quantitative immunohistochemistry of synaptophysin in human neocortex: an alternative method to estimate density of presynaptic terminals in paraffin sections. J Histochem Cytochem 38:837–844

    CAS  PubMed  Google Scholar 

  • Meskenaite V (1997) Calretinin-immunoreactive local circuit neurons in area 17 of the cynomolgus monkey, Macaca fascicularis. J Comp Neurol 379:113–132

    Article  CAS  PubMed  Google Scholar 

  • Mooney SM, Siegenthaler JA, Miller MW (2004) Ethanol induces heterotopias in organotypic cultures of rat cerebral cortex. Cereb Cortex 14:1071–1080

    Article  PubMed  Google Scholar 

  • Reeves RH, Irving NG, Moran TH, Wohn A, Kitt C, Sisodia SS, Schmidt C, Bronson RT, Davisson MT (1995) A mouse model for Down syndrome exhibits learning and behaviour deficits. Nat Genet 11:177–184

    Article  CAS  PubMed  Google Scholar 

  • Rogers JH (1992) Immunohistochemical markers in the rat cortex: co-localization of calretinin and calbindin-D28k with neuropeptides and GABA. Brain Res 587:147–157

    Article  CAS  PubMed  Google Scholar 

  • Rogers JH, Resibois A (1992) Calretinin and calbindin-D28k in rat brain: patterns of partial co-localization. Neuroscience 51:843–865

    Article  CAS  PubMed  Google Scholar 

  • Roizen NJ, Patterson D (2003) Down’s syndrome. Lancet 361:1281–1289

    Article  PubMed  Google Scholar 

  • Ross MH, Galaburda AM, Kempre TL (1984) Down’s syndrome: is there a decreased population of neurons? Neurology 34:909–916

    CAS  PubMed  Google Scholar 

  • Schierle GS, Gander JC, D’Orlando C, Ceilo MR, Vogt Weisenhorn DM (1997) Calretinin-immunoreactivity during postnatal development of the rat isocortex: a qualitative and quantitative study. Cereb Cortex 7:130–142

    Article  CAS  PubMed  Google Scholar 

  • Stafstrom CE (1993) Epilepys in Down syndrome: clinical aspects and possible mechanisms. Am J Ment Retard 98 Suppl:12–26

    CAS  PubMed  Google Scholar 

  • Takashima S, Becker LE, Armstrong DL, Chan F (1981) Abnormal neuronal development in the visual cortex of the human fetus and infant with down’s syndrome: a quantitative and qualitative Golgi study. Brain Res 225:1–21

    Article  CAS  PubMed  Google Scholar 

  • Takashima S, Ieshima A, Nakamura H, Becker LE (1989). Dendrites, dementia and the Down syndrome

  • Varea E, Blasco-Ibáñez JM, Gómez-Climent MA, Castillo-Gómez E, Crespo C, Martínez-Guijarro FJ, Nácher J (2007) Chronic fluoxetine treatment increases the expression of PSA-NCAM in the medial prefrontal cortex. Neuropsychopharmacology 32(4):803–812

    Article  CAS  PubMed  Google Scholar 

  • Vuksic M, Petanjek Z, Rasin MR, Kostovic I (2002) Perinatal growth of prefrontal layer III pyramids in Down syndrome. Pediatr Neurol 27:36–38

    Article  PubMed  Google Scholar 

  • Wichterle H, Turnbull DH, Nery S, Fishell G, Alvarez-Buylla A (2001) In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128:3759–3771

    CAS  PubMed  Google Scholar 

  • Xu Q, de la Cruz E, Anderson SA (2003) Cortical interneuron fate determination: diverse source for distinct subtypes? Cereb Cortex 13:670–676

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by Spanish Ministry of Education and Science (BFU2006-07313/BFI and BFU2007-64130/BFI); Foundation Jerome Lejeune and The Stanley Medical Research Institute (08R-2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Varea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Cremades, D., Hernández, S., Blasco-Ibáñez, J.M. et al. Alteration of inhibitory circuits in the somatosensory cortex of Ts65Dn mice, a model for Down’s syndrome. J Neural Transm 117, 445–455 (2010). https://doi.org/10.1007/s00702-010-0376-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0376-9

Keywords

Navigation