Skip to main content

Advertisement

Log in

Neuroprotection and neurogeneration in MS and its animal model EAE effected by glatiramer acetate

  • Basic Neurosciences, Genetics and Immunology - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

It is by now established that multiple sclerosis (MS) is not simply an autoimmune disease and that in addition to inflammation and demyelination, axonal injury and neuronal loss underlie the accumulation of disability and the disease progression. Specific treatment strategies should thus target the injury sites at the central nervous system (CNS) to interfere with both neuroinflammation and neurodegeneration. Glatiramer acetate (GA Copaxone®, Copolymer 1), an approved drug for the treatment of multiple sclerosis, was shown earlier to act as an anti-inflammatory and immunomodulatory agent. In this mini-review its effect on neuroprotection, neurogenesis and on the remyelination process is delineated in the EAE model. The plausible mechanism underlying this multifactorial effect is the induction of GA-reactive T-cells in the periphery and their infiltration into the CNS, where they release immunomodulatory cytokines and neurotrophic factors in the injury site, suggesting a direct linkage to its therapeutic effect in both EAE and MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aharoni R, Teitelbaum D, Sela M, Arnon R (1997) Copolymer 1 induces T cells of the T helper type 2 that cross react with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 94:10821–10826

    Article  CAS  PubMed  Google Scholar 

  • Aharoni R, Teitelbaum D, Leitner O, Meshorer A, Sela M, Arnon R (2000) Specific Th2 cells accumulate in the central nervous system of mice protected against EE by copolymer. PNAS USA 97:11472–11477

    Article  CAS  PubMed  Google Scholar 

  • Aharoni R, Kayhan B, Eilam R, Sela M, Arnon R (2003) Glatiramer acetate specific T-cells in the brain express TH2/3 cytokines and brain-derived neurotrophic factor in situ. PNAS 100(24):14157–14162

    Article  CAS  PubMed  Google Scholar 

  • Aharoni R, Eylam R, Domev H, Labunsky G, Sela M, Arnon R (2005a) The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. PNAS 102(52):19045–19050

    Article  CAS  PubMed  Google Scholar 

  • Aharoni R, Arnon R, Eilam R (2005b) Neurogenesis and neuroprotection induced by peripheral immunomodulatory treatment of experimental autoimmune encephalomyelitis. J Neuroscience 25(36):8217–8228

    Article  CAS  Google Scholar 

  • Aharoni R, Herschkovitz A, Eilam R, Blumberg-Hazan M, Sela M, Bruck W, Arnon R (2008) Demyelination arrest and remyelination induced by glatiramer acetate treatment of experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 105(32):11358–11363

    Article  CAS  PubMed  Google Scholar 

  • Althau HH (2004) Remyelination in multiple sclerosis: a new role for neurotrophins? Prog Brain Res 146:415–432

    Article  CAS  Google Scholar 

  • Angelov DN, Waibel S, Guntinas-Lichius O et al (2004) Therapeutic vaccine for acute and chronic motor neuron diseases: implications for amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 101:15823–15828

    Article  CAS  Google Scholar 

  • Arnon R (1996) The development of Cop 1 (Copaxone®), an innovative drug for the treatment of multiple sclerosis: personal reflections. Immunol Lett 50:1–15

    Article  CAS  PubMed  Google Scholar 

  • Arnon R, Sela M (2003) Immunomodulation by the copolymer glatiramer acetate. J Mol Recognition 16:412–421

    Article  CAS  Google Scholar 

  • Azoulay D, Vachapova V, Shihman B, Miler A, Karni A (2005) Lower brain-derived neurotrophic factor in serum of relapsing remitting MS: Reversal by glatiramer acetate. J Neuroimmunol 167:215–218

    Article  CAS  PubMed  Google Scholar 

  • Benner EJ, Mosley RI, Destache CJ et al (2004) Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 101:9435–9440

    Article  CAS  PubMed  Google Scholar 

  • Bitsch A, Schuchardt J, Bunkowski S (2000) Acute axonal injury in multiple sclerosis Correlation with demyelination and inflammation. Brain 123:1174–1183

    Article  PubMed  Google Scholar 

  • Bitsch A, Kuhlmann T, Stadelmann C, Lassmann H, Lucchinetti C, Brück W (2001) A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis lesions. Ann Neurol 49:793–796

    Article  CAS  PubMed  Google Scholar 

  • Bjartmar C, Trapp BD (2001) Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol 14:271–278

    Article  CAS  PubMed  Google Scholar 

  • Bjartmar C, Wujek JR, Trapp BD (2003) Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci 15:165–171

    Article  Google Scholar 

  • Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of double cortin during adult neurogenesis. J of Comparative Neurol 467:1–10

    Article  CAS  Google Scholar 

  • Caggiula M, Batocchi AP, Frisullo G, Angelucci F, Patanella AK, Sancricca C, Nociti V, Tonali PA, Mirabella M (2005) Neurotrophic factors and clinical recovery in relapsing-remitting multiple sclerosis. Scand J Immunol 62:176–182

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Valenzuela RM, Dhib-Jalbut S (2003) Glatiramer acetate-reactive T cells produce brain derived neurotrophic factor. J Neurol Sci 215:37–44

    Article  CAS  PubMed  Google Scholar 

  • Farina C, Weber MS, Meinl E, Wekerle H, Hohlfeld R (2005) Glatiramer acetate in multiple sclerosis: update on potential mechanisms of action. Neurol 4:567–575

    CAS  Google Scholar 

  • Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR (2000) Imaging neuronal subsets intransgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51

    Article  CAS  PubMed  Google Scholar 

  • Filippi M, Rovaris M, Rocca MA, the European/Canadian Glatiramer Acetate Study Group (2001) Glatiramer acetate reduces the proportion of new MS lesions evolving into “black holes”. Neurology 57:731–733

    CAS  PubMed  Google Scholar 

  • Ford CC, Johnson KP, Lisak RP, Panitch HS, Shifroni G, Wolinsky JS, the Copaxone Study Group (2006) A prospective open-labeled study of glatiramer acetate: over a decade of continuous use in multiple sclerosis patients. Mult Scler 12:309–320

    Article  CAS  PubMed  Google Scholar 

  • Franklin RJM, Hinks GL (1999) Understanding CNS remyelination: clues from developmental and regeneration biology. J Neurosci Res 58:207–213

    Article  CAS  PubMed  Google Scholar 

  • Fridkis-Hareli M, Teitelbaum D, Gurevich E, Pecht I, Brautbar C, Kwon OJ, Brenner T, Arnon R, Sela M (1994) Direct binding of myelin basic protein and synthetic copolymer 1 class II major histocompatibility complex molecules on living antigen presenting cells-specificity and promiscuity. Proc Natl Acad Sci USA 91:4872–4876

    Article  CAS  PubMed  Google Scholar 

  • Gilgun-Sherki Y, Panet H, Holdengreber V, Mosberg-Galili R, Offen D (2003) Axonal damage is reduced following glatiramer acetate treatment in C57/bl mice with chronic-induced experimental autoimmune encephalomyelitis. Neurosci Res 47:201–207

    Article  CAS  PubMed  Google Scholar 

  • Hellings N, Raus J, Stinissen P (2002) Insights into the immunopathogenesis of multiple sclerosis. Immunol Res 25:27–51

    Article  CAS  PubMed  Google Scholar 

  • Hobom M, Storch MK, Weissert R, Maier K, Radhakrishnan A, Kramer B, Bahr M, Diem R (2004) Mechanisms and time course of neuronal degeneration experimental autoimmune encephalomyelitis. Brain Pathol 14:148–157

    PubMed  Google Scholar 

  • Jin K, Sun Y, Xie L, Peel A, Mao XO, Batteur S, Greenberg DA (2003) Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24:171–189

    Article  CAS  PubMed  Google Scholar 

  • Johnson KP, Knobler RL, Greenstein JL et al (1990) Recombinant beta interferon treatment of relapsing-remitting multiple sclerosis pilot study results. Neurology 40(Suppl 1):261

    Google Scholar 

  • Kawauchi S, Beites CL, Crocker CE, Wu HH, Bonnin A, Murray R, Calof AL (2004) Molecular signals regulating proliferation of stem and progenitor cells in mouse olfactory epithelium. Dev Neurosci 26:166–180

    Article  CAS  PubMed  Google Scholar 

  • Khan O, Shen Y, Caon C et al (2005) Axonal metabolic recovery and potential neuroprotective effect of glatiramer acetate in relapsing-remitting multiple sclerosis. Mult Scler 11:646–651

    Article  CAS  PubMed  Google Scholar 

  • Kipnis J, Yoles E, Porat Z, Cohen A, Mor F, Sela M, Cohen IR, Schwartz M (2000) T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. PNAS 97:7446–7451

    Article  CAS  PubMed  Google Scholar 

  • Kornek B, Lassmann H (1999) Axonal pathology in multiple sclerosis: a historical note. Brain Pathol 9:651–656

    Article  CAS  PubMed  Google Scholar 

  • Lalive PH, Paglinawan R, Biollaz G et al (2005) TGF-beta-treated microglia induce oligodendrocyte precursor cell chemotaxis through the HGF-c-Met pathway. Eur J Immunol 35:727–737

    Article  CAS  PubMed  Google Scholar 

  • Lessman V, Gottmann K, Malcangio M (2003) Neurotrophin secretion: current facts and future prospect. Prog Neurobiol 69:341–374

    Article  CAS  Google Scholar 

  • Magavi SS, Leavitt BR, Macklis JD (2000) Induction of neurogenesis in the neocortex of adult mice. Nature 405:951–955

    Article  CAS  PubMed  Google Scholar 

  • Murer MG, Yan O, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 63:71–124

    Article  CAS  PubMed  Google Scholar 

  • Neuhaus O, Farina C, Yassouridis A, Wiendl H, Then Bergh F, Dose T, Wekerle H, Hohlfeld R (2000) Multiple sclerosis comparison of copolymer-1 reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci USA 97:7452–7457

    Article  CAS  PubMed  Google Scholar 

  • Picard-Riera N, Decker L, Delarasse C, Goude K, Nait-Oumesmar B, Liblau R, Pham-Dinh D, Evercooren AB (2002) Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. PNAS 99:13211–13216

    Article  CAS  PubMed  Google Scholar 

  • PRIM(Prevention of relapses, disability by Interferon beta-1a subsequently in multiple sclerosis) study group (1998) Randomized, double blind, placebo controlled study of Interferon beta-1a in relapsing-remitting multiple sclerosis: clinical results. Lancet 352:1498–1504

    Article  Google Scholar 

  • Riley CP, Cope TC, Buck CR (2004) CNS neurotrophins are biologically active and expressed by multiple cell types. J Mol Histol 35:771–783

    Article  CAS  PubMed  Google Scholar 

  • Schori H, Kipnis J, Yoles E, WoldeMussie E, Ruiz G, Wheeler LA, Schwartz M (2001) Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implication for glaucoma. Proc Natl Acad Sci USA 98:3398–3403

    Article  CAS  PubMed  Google Scholar 

  • Stadelmann C, Kerschensteiner M, Misgeld T, Bruck W, Hohlfeld R, Lassmann H (2002) BDNF and gp145 trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain 125:75–85

    Article  PubMed  Google Scholar 

  • Van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in adult hippocampus. Nature 415:1000–1034

    Article  CAS  Google Scholar 

  • Ziemssen T, Kumpfel T, Kinkert WEF, Neuhaus O, Hohlfeld R (2002) Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy brain-derived neurotrophic factor. Brain 125:2381–2391

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Arnon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnon, R., Aharoni, R. Neuroprotection and neurogeneration in MS and its animal model EAE effected by glatiramer acetate. J Neural Transm 116, 1443–1449 (2009). https://doi.org/10.1007/s00702-009-0272-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0272-3

Keywords

Navigation