Skip to main content
Log in

Integrated signaling in heterodimers and receptor mosaics of different types of GPCRs of the forebrain: relevance for schizophrenia

  • Biological Psychiatry - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Receptor–receptor interactions within receptor heterodimers and receptor mosaics formed by different types of GPCRs represent an important integrative mechanism for signaling in brain networks at the level of the plasma membrane. The malfunction of special heterodimers and receptor mosaics in the ventral striatum containing D2 receptors and 5-HT2A receptors in cortical networks may contribute to disturbances of key pathways involving ventral striato-pallidal GABA neurons and mediodorsal thalamic prefrontal glutamate neurons that may lead to the development of schizophrenia. The ventral striatum transmits emotional information to the cerebral cortex through a D2 regulated accumbal–ventral pallidal–mediodorsal–prefrontal circuit which is of special interest to schizophrenia in view of the reduced number of glutamate mediodorsal–prefrontal projections associated with this disease. This circuit is especially vulnerable to D2 receptor activity in the nucleus accumbens, since it produces a reduction in the prefrontal glutamate drive from the mediodorsal nucleus. The following D2 receptor containing heterodimers/receptor mosaics are of special interest to schizophrenia: A2A–D2, mGluR5–D2, CB1–D2, NTS1–D2 and D2–D3 and are discussed in this review. They may have a differential distribution pattern in the local circuits of the ventral striato-pallidal GABA pathway, predominantly located extrasynaptically. Specifically, trimeric receptor mosaics consisting of A2A–D2–mGluR5 and CB1–D2–A2A may also exist in these local circuits and are discussed. The integration of receptor signaling within assembled heterodimers/receptor mosaics is brought about by agonists and allosteric modulators. These cause the intramembrane receptor–receptor interactions, via allosteric mechanisms, to produce conformational changes that pass over the receptor interfaces. Exogenous and endogenous cooperativity is discussed as well as the role of the cortical mGluR2–5-HT2A heterodimer/receptor mosaic in schizophrenia (Gonzalez-Maeso et al. 2008). Receptor–receptor interactions within receptor heterodimer/receptor mosaics of different receptors in the ventral striatum and cerebral cortex give novel strategies for treatment of schizophrenia involving, e.g., monotherapy with either A2A, mGluR5, CB1 or NTS1 agonists or combined therapies with some of these agonists combined with D2-like antagonists that specifically target the ventral striatum. In addition, a combined targeting of receptor mosaics in the ventral striatum and in the cerebral cortex should also be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adermark L, Lovinger DM (2007) Retrograde endocannabinoid signaling at striatal synapses requires a regulated postsynaptic release step. Proc Natl Acad Sci USA 104:20564–20569

    PubMed  CAS  Google Scholar 

  • Aghajanian GK, Marek GJ (2000) Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res Brain Res Rev 31:302–312

    PubMed  CAS  Google Scholar 

  • Aghajanian GK, Foote WE, Sheard MH (1968) Lysergic acid diethylamide: sensitive neuronal units in the midbrain raphe. Science 161:706–708

    PubMed  CAS  Google Scholar 

  • Agnati LF, Fuxe K, Benfenati F, Battistini N (1983) Neurotensin in vitro markedly reduces the affinity in subcortical limbic 3H-N-propylnorapomorphine binding sites. Acta Physiol Scand 119:459–461

    PubMed  CAS  Google Scholar 

  • Agnati LF, Ferre S, Lluis C, Franco R, Fuxe K (2003) Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA neurons. Pharmacol Rev 55:509–550

    PubMed  CAS  Google Scholar 

  • Agnati LF, Ferre S, Genedani S et al (2006) Allosteric modulation of dopamine D2 receptors by homocysteine. J Proteome Res 5:3077–3083

    PubMed  CAS  Google Scholar 

  • Agnati L, Guidolin D, Genedani S, Arhem P, Forni A, Andreoli N, Fuxe K (2007a) Role of cooperativity in protein folding and protein mosaic assemblage: relevance for protein conformational diseases. Curr Protein Pept Sci 8:460–470

    PubMed  CAS  Google Scholar 

  • Agnati LF, Guidolin D, Leo G, Fuxe K (2007b) A boolean network modelling of receptor mosaics relevance of topology and cooperativity. J Neural Transm 114:77–92

    PubMed  CAS  Google Scholar 

  • Agnati LF, Leo G, Genedani S, Andreoli N, Marcellino D, Woods A, Piron L, Guidolin D, Fuxe K (2008) Structural plasticity in G-protein coupled receptors as demonstrated by the allosteric actions of homocysteine and computer-assisted analysis of disordered domains. Brain Res Rev 58:459–474

    PubMed  CAS  Google Scholar 

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia–thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146

    PubMed  CAS  Google Scholar 

  • Anden NE, Dahlstroem A, Fuxe K, Larsson K, Olson L, Ungerstedt U (1966) Ascending monoamine neurons to the telencephalon and diencephalon. Acta Physiol Scand 67:313–326

    CAS  Google Scholar 

  • Anden NE, Corrodi H, Fuxe K, Hokfelt T (1968) Evidence for a central 5-hydroxytryptamine receptor stimulation by lysergic acid diethylamide. Br J Pharmacol 34:1–7

    PubMed  CAS  Google Scholar 

  • Anden NE, Corrodi H, Fuxe K (1971) Hallucinogenic drugs of the indolealkylamine type and central monoamine neurons. J Pharmacol Exp Ther 179:236–249

    PubMed  CAS  Google Scholar 

  • Anden NE, Corrodi H, Fuxe K, Meek JL (1974) Hallucinogenic phenylethylamines: interactions with serotonin turnover and receptors. Eur J Pharmacol 25:176–184

    PubMed  CAS  Google Scholar 

  • Andersen MB, Fuxe K, Werge T, Gerlach J (2002) The adenosine A2A receptor agonist CGS 21680 exhibits antipsychotic-like activity in Cebus apella monkeys. Behav Pharmacol 13:639–644

    PubMed  CAS  Google Scholar 

  • Andersson M, Terasmaa A, Fuxe K, Stromberg I (2005a) Subchronic haloperidol increases CB(1) receptor binding and G protein coupling in discrete regions of the basal ganglia. J Neurosci Res 82:264–272

    PubMed  CAS  Google Scholar 

  • Andersson M, Usiello A, Borgkvist A et al (2005b) Cannabinoid action depends on phosphorylation of dopamine- and cAMP-regulated phosphoprotein of 32 kDa at the protein kinase A site in striatal projection neurons. J Neurosci 25:8432–8438

    PubMed  CAS  Google Scholar 

  • Antonelli T, Fuxe K, Tomasini MC, Mazzoni E, Agnati LF, Tanganelli S, Ferraro L (2007) Neurotensin receptor mechanisms and its modulation of glutamate transmission in the brain: relevance for neurodegenerative diseases and their treatment. Prog Neurobiol 83:92–109

    PubMed  CAS  Google Scholar 

  • Bateup HS, Svenningsson P, Kuroiwa M, Gong S, Nishi A, Heintz N, Greengard P (2008) Cell type-specific regulation of DARPP-32 phosphorylation by psychostimulant and antipsychotic drugs. Nat Neurosci 11:932–939

    PubMed  CAS  Google Scholar 

  • Belin D, Everitt BJ (2008) Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57:432–441

    PubMed  CAS  Google Scholar 

  • Benneyworth MA, Xiang Z, Smith RL, Garcia EE, Conn PJ, Sanders-Bush E (2007) A selective positive allosteric modulator of metabotropic glutamate receptor subtype 2 blocks a hallucinogenic drug model of psychosis. Mol Pharmacol 72:477–484

    PubMed  CAS  Google Scholar 

  • Berger B, Thierry AM, Tassin JP, Moyne MA (1976) Dopaminergic innervation of the rat prefrontal cortex: a fluorescence histochemical study. Brain Res 106:133–145

    PubMed  CAS  Google Scholar 

  • Bernstein HG, Krause S, Krell D et al (2007) Strongly reduced number of parvalbumin-immunoreactive projection neurons in the mammillary bodies in schizophrenia: further evidence for limbic neuropathology. Ann N Y Acad Sci 1096:120–127

    PubMed  CAS  Google Scholar 

  • Borgkvist A, Marcellino D, Fuxe K, Greengard P, Fisone G (2008) Regulation of DARPP-32 phosphorylation by Delta(9)-tetrahydrocannabinol. Neuropharmacology 54(1):31–35

    PubMed  CAS  Google Scholar 

  • Breslin NA, Suddath RL, Bissette G, Nemeroff CB, Lowrimore P, Weinberger DR (1994) CSF concentrations of neurotensin in schizophrenia: an investigation of clinical and biochemical correlates. Schizophr Res 12:35–41

    PubMed  CAS  Google Scholar 

  • Caceda R, Kinkead B, Nemeroff CB (2006) Neurotensin: role in psychiatric and neurological diseases. Peptides 27:2385–2404

    PubMed  CAS  Google Scholar 

  • Canals M, Marcellino D, Fanelli F et al (2003) Adenosine A2A-dopamine D2 receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J Biol Chem 278:46741–46749

    PubMed  CAS  Google Scholar 

  • Carlsson A (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1:179–186

    PubMed  CAS  Google Scholar 

  • Carlsson A, Carlsson ML (2008) Adaptive properties and heterogeneity of dopamine D(2) receptors: pharmacological implications. Brain Res Rev 58:374–378

    PubMed  CAS  Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effect Of chlorpromazine or haloperidol on formation of 3 methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol (Copenh) 20:140–144

    CAS  Google Scholar 

  • Carriba P, Ortiz O, Patkar K et al (2007) Striatal adenosine A(2A) and cannabinoid CB(1) receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology 32(11):2249–2259

    PubMed  CAS  Google Scholar 

  • Carriba P, Navarro G, Ciruela F et al (2008) Detection of heteromerization of more than two proteins by sequential BRET–FRET. Nat Methods 5:727–733

    PubMed  CAS  Google Scholar 

  • Centonze D, Battista N, Rossi S, Mercuri NB, Finazzi-Agro A, Bernardi G, Calabresi P, Maccarrone M (2004) A critical interaction between dopamine D2 receptors and endocannabinoids mediates the effects of cocaine on striatal gabaergic transmission. Neuropsychopharmacology 29:1488–1497

    PubMed  CAS  Google Scholar 

  • Ciruela F, Burgueno J, Casado V et al (2004) Combining mass spectrometry and pull-down techniques for the study of receptor heteromerization: dDirect epitope–epitope electrostatic interactions between adenosine A2A and dopamine D2 receptors. Anal Chem 76:5354–5363

    PubMed  CAS  Google Scholar 

  • Colpaert FC (2003) Discovering risperidone: the LSD model of psychopathology. Nat Rev Drug Discov 2:315–320

    PubMed  CAS  Google Scholar 

  • Conn PJ, Battaglia G, Marino MJ, Nicoletti F (2005) Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 6:787–798

    PubMed  CAS  Google Scholar 

  • Cullen TJ, Walker MA, Parkinson N, Craven R, Crow TJ, Esiri MM, Harrison PJ (2003) A postmortem study of the mediodorsal nucleus of the thalamus in schizophrenia. Schizophr Res 60:157–166

    PubMed  CAS  Google Scholar 

  • Cummins JT, von Euler G, Fuxe K, Ogren SO, Agnati LF (1987) Chronic imipramine treatment reduces (+)2-[125I]iodolysergic acid, diethylamide but not 125I-neuropeptide Y binding in layer IV of rat cerebral cortex. Neurosci Lett 75:152–156

    PubMed  CAS  Google Scholar 

  • D’Souza DC, Abi-Saab WM, Madonick S, Forselius-Bielen K, Doersch A, Braley G, Gueorguieva R, Cooper TB, Krystal JH (2005) Delta-9-tetrahydrocannabinol effects in schizophrenia: implications for cognition, psychosis, and addiction. Biol Psychiatry 57:594–608

    PubMed  Google Scholar 

  • Dahlstroem A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl Suppl 232:231–255

    Google Scholar 

  • Danos P (2004) Pathology of the thalamus and schizophrenia: an overview. Fortschr Neurol Psychiatr 72:621–634

    PubMed  CAS  Google Scholar 

  • Danos P, Baumann B, Kramer A, Bernstein HG, Stauch R, Krell D, Falkai P, Bogerts B (2003) Volumes of association thalamic nuclei in schizophrenia: a postmortem study. Schizophr Res 60:141–155

    PubMed  Google Scholar 

  • Danos P, Schmidt A, Baumann B, Bernstein HG, Northoff G, Stauch R, Krell D, Bogerts B (2005) Volume and neuron number of the mediodorsal thalamic nucleus in schizophrenia: a replication study. Psychiatry Res 140:281–289

    PubMed  Google Scholar 

  • Del Arco A, Mora F, Mohammed AH, Fuxe K (2007) Stimulation of D2 receptors in the prefrontal cortex reduces PCP-induced hyperactivity, acetylcholine release and dopamine metabolism in the nucleus accumbens. J Neural Transm 114:185–193

    PubMed  CAS  Google Scholar 

  • Diaz J, Pilon C, Le Foll B, Gros C, Triller A, Schwartz JC, Sokoloff P (2000) Dopamine D3 receptors expressed by all mesencephalic dopamine neurons. J Neurosci 20:8677–8684

    PubMed  CAS  Google Scholar 

  • Diaz-Cabiale Z, Fuxe K, Narvaez JA, Finetti S, Antonelli T, Tanganelli S, Ferraro L (2002a) Neurotensin-induced modulation of dopamine D2 receptors and their function in rat striatum: counteraction by a NTR1-like receptor antagonist. Neuroreport 13:763–766

    PubMed  CAS  Google Scholar 

  • Diaz-Cabiale Z, Vivo M, Del Arco A et al (2002b) Metabotropic glutamate mGlu5 receptor-mediated modulation of the ventral striopallidal GABA pathway in rats: interactions with adenosine A(2A) and dopamine D(2) receptors. Neurosci Lett 324:154–158

    PubMed  CAS  Google Scholar 

  • Dobner PR, Deutch AY, Fadel J (2003) Neurotensin: dual roles in psychostimulant and antipsychotic drug responses. Life Sci 73:801–811

    PubMed  CAS  Google Scholar 

  • Dorph-Petersen KA, Pierri JN, Sun Z, Sampson AR, Lewis DA (2004) Stereological analysis of the mediodorsal thalamic nucleus in schizophrenia: volume, neuron number, and cell types. J Comp Neurol 472:449–462

    PubMed  Google Scholar 

  • Everitt BJ, Fuxe K, Hokfelt FT, Jonsson G (1975) Role of monoamines in the control by hormones of sexual receptivity in the female rat. J Comp Physiol Psychol 89:556–572

    PubMed  CAS  Google Scholar 

  • Feifel D, Reza TL, Wustrow DJ, Davis MD (1999) Novel antipsychotic-like effects on prepulse inhibition of startle produced by a neurotensin agonist. J Pharmacol Exp Ther 288:710–713

    PubMed  CAS  Google Scholar 

  • Ferraro L, Tomasini MC, Fuxe K, Agnati LF, Mazza R, Tanganelli S, Antonelli T (2007) Mesolimbic dopamine and cortico-accumbens glutamate afferents as major targets for the regulation of the ventral striato-pallidal GABA pathways by neurotensin peptides. Brain Res Rev 55:144–154

    PubMed  CAS  Google Scholar 

  • Ferraro L, Tomasini MC, Mazza R, Fuxe K, Fournier J, Tanganelli S, Antonelli T (2008) Neurotensin receptors as modulators of glutamatergic transmission. Brain Res Rev 58:365–373

    PubMed  CAS  Google Scholar 

  • Ferre S, von Euler G, Johansson B, Fredholm BB, Fuxe K (1991) Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc Natl Acad Sci USA 88:7238–7241

    PubMed  CAS  Google Scholar 

  • Ferre S, O’Connor WT, Snaprud P, Ungerstedt U, Fuxe K (1994) Antagonistic interaction between adenosine A2A receptors and dopamine D2 receptors in the ventral striopallidal system: implications for the treatment of schizophrenia. Neuroscience 63:765–773

    PubMed  CAS  Google Scholar 

  • Ferre S, Popoli P, Rimondini R, Reggio R, Kehr J, Fuxe K (1999) Adenosine A2A and group I metabotropic glutamate receptors synergistically modulate the binding characteristics of dopamine D2 receptors in the rat striatum. Neuropharmacology 38:129–140

    PubMed  CAS  Google Scholar 

  • Ferre S, Karcz-Kubicha M, Hope BT et al (2002) Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. Proc Natl Acad Sci USA 99:11940–11945

    PubMed  CAS  Google Scholar 

  • Ferre S, Ciruela F, Canals M et al (2004) Adenosine A2A-dopamine D2 receptor-receptor heteromers: targets for neuro-psychiatric disorders. Parkinsonism Relat Disord 10:265–271

    PubMed  Google Scholar 

  • Ferre S, Agnati LF, Ciruela F, Lluis C, Woods AS, Fuxe K, Franco R (2007) Neurotransmitter receptor heteromers and their integrative role in ‘local modules’: The striatal spine module. Brain Res Rev 55:55–67

    PubMed  CAS  Google Scholar 

  • Fuxe K (1965) Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol Scand Suppl Suppl 247:237

    Google Scholar 

  • Fuxe K (1970) Biological and pharmacological theories. In: Bobon DP, Janssen PAJ, Bobon J (eds) The neuroleptics. S. Karger, Basel, pp 121–122

    Google Scholar 

  • Fuxe K, Holmstedt B, Jonsson G (1972) Effects of 5-methoxy-N, N-dimethyltryptamine on central monoamine neurons. Eur J Pharmacol 19:25–34

    PubMed  CAS  Google Scholar 

  • Fuxe K, Everitt BJ, Agnati L, Fredholm BB, Jonsson G (1976) On the biochemistry and pharmacology of hallucinogens. In: Kemali D, Bartholini G, Richter D (eds) Schizophrenia today. Pergamon, Oxford, pp 135–157

    Google Scholar 

  • Fuxe K, Andersson K, Schwarcz R (1979) Studies on different types of DA nerve terminals in the forebrain and their possible interactions with hormones and with neurons containing GABA, glutamate and opiod peptides. In: Poirier LJ, Sourkes TL, Bedard PJ et al (eds) Advances in neurology, vol 24. Raven, New York, pp 199–214

    Google Scholar 

  • Fuxe K, Celani MF, Martire M, Zini I, Zoli M, Agnati LF (1984) l-Glutamate reduces the affinity of [3H]N-propylnorapomorphine binding sites in striatal membranes. Eur J Pharmacol 100:127–130

    PubMed  CAS  Google Scholar 

  • Fuxe K, O’Connor WT, Antonelli T, Osborne PG, Tanganelli S, Agnati LF, Ungerstedt U (1992) Evidence for a substrate of neuronal plasticity based on pre- and postsynaptic neurotensin–dopamine receptor interactions in the neostriatum. Proc Natl Acad Sci USA 89:5591–5595

    PubMed  CAS  Google Scholar 

  • Fuxe K, Ferre S, Snaprud P, von Euler G, Johansson B, Fredholm BB (1993) Antagonistic A2A/D2 receptor interactions as a basis for adenosine/dopamine interactionns in the central nervous system. Drug Dev Res 28:374–380

    CAS  Google Scholar 

  • Fuxe K, Agnati LF, Jacobsen K et al (2003a) Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson’s disease. Neurology 61:S19–S23

    PubMed  CAS  Google Scholar 

  • Fuxe K, Ferre S, Woods A, Rivera A, Hoistad M, Franco R, Kehr J, Agnati L (2003b) Novel strategies for the treatment of Parkinson’s disease: focus on receptor–receptor interactions in the basal ganglia. In: Kehr J, Fuxe K, Ungerstedt U, Svensson T (eds) Monitoring molecules in neuroscience. Karolinska University Press, Stockholm, pp 199–202

    Google Scholar 

  • Fuxe K, Ferre S, Canals M et al (2005) Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. J Mol Neurosci 26:209–220

    PubMed  CAS  Google Scholar 

  • Fuxe K, Canals M, Torvinen M et al (2007a) Intramembrane receptor–receptor interactions: a novel principle in molecular medicine. J Neural Transm 114:49–75

    PubMed  CAS  Google Scholar 

  • Fuxe K, Dahlstrom A, Hoistad M et al (2007b) From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission. Brain Res Rev 55:17–54

    PubMed  CAS  Google Scholar 

  • Fuxe K, Ferre S, Genedani S, Franco R, Agnati LF (2007c) Adenosine receptor–dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol Behav 92:210–217

    PubMed  CAS  Google Scholar 

  • Fuxe K, Marcellino D, Genedani S, Agnati L (2007d) Adenosine A(2A) receptors, dopamine D(2) receptors and their interactions in Parkinson’s disease. Mov Disord 22:1990–2017

    PubMed  Google Scholar 

  • Fuxe K, Marcellino D, Rivera A et al (2008) Receptor–receptor interactions within receptor mosaics: impact on neuropsychopharmacology. Brain Res Rev 58:415–452

    PubMed  CAS  Google Scholar 

  • Gandia J, Galino J, Amaral OB, Soriano A, Lluis C, Franco R, Ciruela F (2008) Detection of higher-order G protein-coupled receptor oligomers by a combined BRET–BiFC technique. FEBS Lett 582:2979–2984

    PubMed  CAS  Google Scholar 

  • Giuffrida A, Parsons LH, Kerr TM, Rodriguez de Fonseca F, Navarro M, Piomelli D (1999) Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci 2:358–363

    PubMed  CAS  Google Scholar 

  • Glass M, Felder CC (1997) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. J Neurosci 17:5327–5333

    PubMed  CAS  Google Scholar 

  • Gonzalez-Maeso J, Yuen T, Ebersole BJ et al (2003) Transcriptome fingerprints distinguish hallucinogenic and nonhallucinogenic 5-hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex. J Neurosci 23:8836–8843

    PubMed  CAS  Google Scholar 

  • Gonzalez-Maeso J, Weisstaub NV, Zhou M et al (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53:439–452

    PubMed  CAS  Google Scholar 

  • Gonzalez-Maeso J, Ang RL, Yuen T et al (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452:93–97

    PubMed  CAS  Google Scholar 

  • Gozes I (2005) Receptor–receptor interactions among heptaspanning membrane receptors: from structure to function. In: Wenner-Gren Foundation symposium on receptor–receptor interactions among heptaspanning membrane receptors: from structure to function, vol, special issue of J Mol Neurosci 26 (Nos. 2, 3). Humana press, Stockholm, pp 109–305

  • Grace AA (2000) Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Res Brain Res Rev 31:330–341

    PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Trimble M (2007) The ventral striatum as an interface between the limbic and motor systems. CNS Spectr 12:887–892

    PubMed  Google Scholar 

  • Groenewegen HJ, Berendse HW, Haber SN (1993) Organization of the output of the ventral striatopallidal system in the rat: ventral pallidal efferents. Neuroscience 57:113–142

    PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Wright CI, Beijer AV (1996) The nucleus accumbens: gateway for limbic structures to reach the motor system? Prog Brain Res 107:485–511

    PubMed  CAS  Google Scholar 

  • Guo W, Urizar E, Kralikova M, Mobarec JC, Shi L, Filizola M, Javitch JA (2008) Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J 27:2293–2304

    PubMed  CAS  Google Scholar 

  • Gurevich EV, Joyce JN (1999) Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsychopharmacology 20:60–80

    PubMed  CAS  Google Scholar 

  • Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382

    PubMed  CAS  Google Scholar 

  • Hakansson K, Galdi S, Hendrick J, Snyder G, Greengard P, Fisone G (2006) Regulation of phosphorylation of the GluR1 AMPA receptor by dopamine D2 receptors. J Neurochem 96:482–488

    PubMed  Google Scholar 

  • Heimer L (2000) Basal forebrain in the context of schizophrenia. Brain Res Brain Res Rev 31:205–235

    PubMed  CAS  Google Scholar 

  • Hernandez-Lopez S, Tkatch T, Perez-Garci E, Galarraga E, Bargas J, Hamm H, Surmeier DJ (2000) D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[beta]1-IP3-calcineurin-signaling cascade. J Neurosci 20:8987–8995

    PubMed  CAS  Google Scholar 

  • Hillion J, Canals M, Torvinen M et al (2002) Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J Biol Chem 277:18091–18097

    PubMed  CAS  Google Scholar 

  • Jansson A, Tinner B, Bancila M, Verge D, Steinbusch HW, Agnati LF, Fuxe K (2001) Relationships of 5-hydroxytryptamine immunoreactive terminal-like varicosities to 5-hydroxytryptamine-2A receptor-immunoreactive neuronal processes in the rat forebrain. J Chem Neuroanat 22:185–203

    PubMed  CAS  Google Scholar 

  • Joyce JN, Gurevich EV (1999) D3 receptors and the actions of neuroleptics in the ventral striatopallidal system of schizophrenics. Ann N Y Acad Sci 877:595–613

    PubMed  CAS  Google Scholar 

  • Joyce JN, Millan MJ (2005) Dopamine D3 receptor antagonists as therapeutic agents. Drug Discov Today 10:917–925

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Nemeroff CB, Prange AJ Jr (1981) Increase in spontaneous motor activity following infusion of neurotensin into the ventral tegmental area. Brain Res 229:525–529

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Nemeroff CB, Prange AJ Jr (1984) Neurotensin microinjection into the nucleus accumbens antagonizes dopamine-induced increase in locomotion and rearing. Neuroscience 11:919–930

    PubMed  CAS  Google Scholar 

  • Kamiya T, Saitoh O, Yoshioka K, Nakata H (2003) Oligomerization of adenosine A2A and dopamine D2 receptors in living cells. Biochem Biophys Res Commun 306:544–549

    PubMed  CAS  Google Scholar 

  • Kearn CS, Blake-Palmer K, Daniel E, Mackie K, Glass M (2005) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol Pharmacol 67:1697–1704

    PubMed  CAS  Google Scholar 

  • Khan ZU, Mrzljak L, Gutierrez A, de la Calle A, Goldman-Rakic PS (1998) Prominence of the dopamine D2 short isoform in dopaminergic pathways. Proc Natl Acad Sci USA 95:7731–7736

    PubMed  CAS  Google Scholar 

  • Kinney GG, Burno M, Campbell UC, Hernandez LM, Rodriguez D, Bristow LJ, Conn PJ (2003) Metabotropic glutamate subtype 5 receptors modulate locomotor activity and sensorimotor gating in rodents. J Pharmacol Exp Ther 306:116–123

    PubMed  CAS  Google Scholar 

  • Kinney GG, O’Brien JA, Lemaire W et al (2005) A novel selective positive allosteric modulator of metabotropic glutamate receptor subtype 5 has in vivo activity and antipsychotic-like effects in rat behavioral models. J Pharmacol Exp Ther 313:199–206

    PubMed  CAS  Google Scholar 

  • Kreitzer AC, Malenka RC (2007) Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature 445:643–647

    PubMed  CAS  Google Scholar 

  • Leweke FM, Giuffrida A, Koethe D et al (2007) Anandamide levels in cerebrospinal fluid of first-episode schizophrenic patients: impact of cannabis use. Schizophr Res 94:29–36

    PubMed  Google Scholar 

  • Li XM, Hedlund PB, Fuxe K (1994) Strong effects of NT/NN peptides on DA D2 receptors in rat neostriatal sections. Neuroreport 5:1621–1624

    PubMed  CAS  Google Scholar 

  • Lieberman JA, Mailman RB, Duncan G, Sikich L, Chakos M, Nichols DE, Kraus JE (1998) Serotonergic basis of antipsychotic drug effects in schizophrenia. Biol Psychiatry 44:1099–1117

    PubMed  CAS  Google Scholar 

  • Liu XY, Chu XP, Mao LM et al (2006) Modulation of D2R–NR2B interactions in response to cocaine. Neuron 52:897–909

    PubMed  CAS  Google Scholar 

  • Mackie K (2005) Cannabinoid receptor homo- and heterodimerization. Life Sci 77:1667–1673

    PubMed  CAS  Google Scholar 

  • Maggio R, Scarselli M, Novi F, Millan MJ, Corsini GU (2003) Potent activation of dopamine D3/D2 heterodimers by the antiparkinsonian agents, S32504, pramipexole and ropinirole. J Neurochem 87:631–641

    PubMed  CAS  Google Scholar 

  • Maggio R, Novi F, Scarselli M, Corsini GU (2005) The impact of G-protein-coupled receptor hetero-oligomerization on function and pharmacology. FEBS J 272:2939–2946

    PubMed  CAS  Google Scholar 

  • Maneuf YP, Crossman AR, Brotchie JM (1997) The cannabinoid receptor agonist WIN 55, 212–2 reduces D2, but not D1, dopamine receptor-mediated alleviation of akinesia in the reserpine-treated rat model of Parkinson’s disease. Exp Neurol 148:265–270

    PubMed  CAS  Google Scholar 

  • Marcellino D, Carriba P, Filip M et al (2008) Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers: a combined neurochemical and behavioral analysis. Neuropharmacology 54:815–823

    Article  PubMed  CAS  Google Scholar 

  • Marek GJ (2004) Metabotropic glutamate 2/3 receptors as drug targets. Curr Opin Pharmacol 4:18–22

    PubMed  CAS  Google Scholar 

  • Marshall FH (2001) Heterodimerization of G-protein-coupled receptors in the CNS. Curr Opin Pharmacol 1:40–44

    PubMed  CAS  Google Scholar 

  • Marshall FH (2005) Is the GABA B heterodimer a good drug target? J Mol Neurosci 26:169–176

    PubMed  CAS  Google Scholar 

  • Maurel D, Comps-Agrar L, Brock C et al (2008) Cell-surface protein–protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 5:561–567

    PubMed  CAS  Google Scholar 

  • Millan MJ, Gobert A, Newman-Tancredi A, Lejeune F, Cussac D, Rivet JM, Audinot V, Dubuffet T, Lavielle G (2000) S33084, a novel, potent, selective, and competitive antagonist at dopamine D(3)-receptors: I. Receptorial, electrophysiological and neurochemical profile compared with GR218, 231 and L741, 626. J Pharmacol Exp Ther 293:1048–1062

    PubMed  CAS  Google Scholar 

  • Milligan G, Smith NJ (2007) Allosteric modulation of heterodimeric G-protein-coupled receptors. Trends Pharmacol Sci 28:615–620

    PubMed  CAS  Google Scholar 

  • Miyamoto S, Duncan GE, Marx CE, Lieberman JA (2005) Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry 10:79–104

    PubMed  CAS  Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, McIntosh HH, Houston DB, Howlett AC (2000) The CB(1) cannabinoid receptor juxtamembrane C-terminal peptide confers activation to specific G proteins in brain. Mol Pharmacol 57:162–170

    PubMed  CAS  Google Scholar 

  • Nemeroff CB (1980) Neurotensin: perchance an endogenous neuroleptic? Biol Psychiatry 15:283–302

    PubMed  CAS  Google Scholar 

  • Nimchinsky EA, Hof PR, Janssen WG, Morrison JH, Schmauss C (1997) Expression of dopamine D3 receptor dimers and tetramers in brain and in transfected cells. J Biol Chem 272:29229–29237

    PubMed  CAS  Google Scholar 

  • Nishi A, Liu F, Matsuyama S, Hamada M, Higashi H, Nairn AC, Greengard P (2003) Metabotropic mGlu5 receptors regulate adenosine A2A receptor signaling. Proc Natl Acad Sci USA 100:1322–1327

    PubMed  Google Scholar 

  • Novi F, Millan MJ, Corsini GU, Maggio R (2007) Partial agonist actions of aripiprazole and the candidate antipsychotics S33592, bifeprunox, N-desmethylclozapine and preclamol at dopamine D(2L) receptors are modified by co-transfection of D(3) receptors: potential role of heterodimer formation. J Neurochem 102:1410–1424

    PubMed  CAS  Google Scholar 

  • Pakkenberg B (1990) Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 47:1023–1028

    PubMed  CAS  Google Scholar 

  • Palacios JM (1983) Quantitative receptor autoradiography: application to the study of multiple serotonin receptors in rat cortex. Adv Biochem Psychopharmacol 37:455–463

    PubMed  CAS  Google Scholar 

  • Patil ST, Zhang L, Martenyi F et al (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 13:1102–1107

    PubMed  CAS  Google Scholar 

  • Pickel VM, Chan J, Kearn CS, Mackie K (2006) Targeting dopamine D2 and cannabinoid-1 (CB1) receptors in rat nucleus accumbens. J Comp Neurol 495:299–313

    PubMed  CAS  Google Scholar 

  • Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4:873–884

    PubMed  CAS  Google Scholar 

  • Popken GJ, Bunney WE Jr, Potkin SG, Jones EG (2000) Subnucleus-specific loss of neurons in medial thalamus of schizophrenics. Proc Natl Acad Sci USA 97:9276–9280

    PubMed  CAS  Google Scholar 

  • Popoli P, Pezzola A, Torvinen M, Reggio R, Pintor A, Scarchilli L, Fuxe K, Ferre S (2001) The selective mGlu(5) receptor agonist CHPG inhibits quinpirole-induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D(2) receptors in the rat striatum: interactions with adenosine A(2a) receptors. Neuropsychopharmacology 25:505–513

    PubMed  CAS  Google Scholar 

  • Rimondini R, Ferre S, Ogren SO, Fuxe K (1997) Adenosine A2A agonists: a potential new type of atypical antipsychotic. Neuropsychopharmacology 17:82–91

    PubMed  CAS  Google Scholar 

  • Rodriguez de Fonseca F, Del Arco I, Martin-Calderon JL, Gorriti MA, Navarro M (1998) Role of the endogenous cannabinoid system in the regulation of motor activity. Neurobiol Dis 5:483–501

    PubMed  CAS  Google Scholar 

  • Rosin DL, Robeva A, Woodard RL, Guyenet PG, Linden J (1998) Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J Comp Neurol 401:163–186

    PubMed  CAS  Google Scholar 

  • Scarselli M, Novi F, Schallmach E et al (2001) D2/D3 dopamine receptor heterodimers exhibit unique functional properties. J Biol Chem 276:30308–30314

    PubMed  CAS  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    PubMed  CAS  Google Scholar 

  • Schwartz JC, Diaz J, Pilon C, Sokoloff P (2000) Possible implications of the dopamine D(3) receptor in schizophrenia and in antipsychotic drug actions. Brain Res Brain Res Rev 31:277–287

    PubMed  CAS  Google Scholar 

  • Schwarzschild MA, Agnati L, Fuxe K, Chen JF, Morelli M (2006) Targeting adenosine A(2A) receptors in Parkinson’s disease. Trends Neurosci 29:647–654

    PubMed  CAS  Google Scholar 

  • Seeman P, Schwarz J, Chen JF et al (2006) Psychosis pathways converge via D2high dopamine receptors. Synapse 60:319–346

    PubMed  CAS  Google Scholar 

  • Sharma RP, Janicak PG, Bissette G, Nemeroff CB (1997) CSF neurotensin concentrations and antipsychotic treatment in schizophrenia and schizoaffective disorder. Am J Psychiatry 154:1019–1021

    PubMed  CAS  Google Scholar 

  • Shen W, Flajolet M, Greengard P, Surmeier DJ (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321:848–851

    PubMed  CAS  Google Scholar 

  • Shindou T, Nonaka H, Richardson PJ, Mori A, Kase H, Ichimura M (2002) Presynaptic adenosine A2A receptors enhance GABAergic synaptic transmission via a cyclic AMP dependent mechanism in the rat globus pallidus. Br J Pharmacol 136:296–302

    PubMed  CAS  Google Scholar 

  • Simola N, Fenu S, Baraldi PG, Tabrizi MA, Morelli M (2006) Involvement of globus pallidus in the antiparkinsonian effects of adenosine A(2A) receptor antagonists. Exp Neurol 202:255–257

    PubMed  CAS  Google Scholar 

  • Sokoloff P, Diaz J, Le Foll B, Guillin O, Leriche L, Bezard E, Gross C (2006) The dopamine D3 receptor: a therapeutic target for the treatment of neuropsychiatric disorders. CNS Neurol Disord Drug Targets 5:25–43

    PubMed  CAS  Google Scholar 

  • Stahl SM (2007a) Beyond the dopamine hypothesis to the NMDA glutamate receptor hypofunction hypothesis of schizophrenia. CNS Spectr 12:265–268

    PubMed  Google Scholar 

  • Stahl SM (2007b) The genetics of schizophrenia converge upon the NMDA glutamate receptor. CNS Spectr 12:583–588

    PubMed  Google Scholar 

  • Stahl SM (2008) Do dopamine partial agonists have partial efficacy as antipsychotics? CNS Spectr 13:279–282

    PubMed  Google Scholar 

  • Sturm V, Lenartz D, Koulousakis A, Treuer H, Herholz K, Klein JC, Klosterkotter J (2003) The nucleus accumbens: a target for deep brain stimulation in obsessive-compulsive- and anxiety-disorders. J Chem Neuroanat 26:293–299

    PubMed  Google Scholar 

  • Surmeier DJ, Song WJ, Yan Z (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 16:6579–6591

    PubMed  CAS  Google Scholar 

  • Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30:228–235

    PubMed  CAS  Google Scholar 

  • Svensson TH (2000) Dysfunctional brain dopamine systems induced by psychotomimetic NMDA-receptor antagonists and the effects of antipsychotic drugs. Brain Res Brain Res Rev 31:320–329

    PubMed  CAS  Google Scholar 

  • Tamminga CA, Carlsson A (2002) Partial dopamine agonists and dopaminergic stabilizers, in the treatment of psychosis. Curr Drug Targets CNS Neurol Disord 1:141–147

    PubMed  CAS  Google Scholar 

  • Tanganelli S, von Euler G, Fuxe K, Agnati LF, Ungerstedt U (1989) Neurotensin counteracts apomorphine-induced inhibition of dopamine release as studied by microdialysis in rat neostriatum. Brain Res 502:319–324

    PubMed  CAS  Google Scholar 

  • Tanganelli S, O’Connor WT, Ferraro L, Bianchi C, Beani L, Ungerstedt U, Fuxe K (1994) Facilitation of GABA release by neurotensin is associated with a reduction of dopamine release in rat nucleus accumbens. Neuroscience 60:649–657

    PubMed  CAS  Google Scholar 

  • Torvinen M, Marcellino D, Canals M, Agnati LF, Lluis C, Franco R, Fuxe K (2005) Adenosine A2A receptor and dopamine D3 receptor interactions: evidence of functional A2A/D3 heteromeric complexes. Mol Pharmacol 67:400–407

    PubMed  CAS  Google Scholar 

  • Uchigashima M, Narushima M, Fukaya M, Katona I, Kano M, Watanabe M (2007) Subcellular arrangement of molecules for 2-arachidonoyl-glycerol-mediated retrograde signaling and its physiological contribution to synaptic modulation in the striatum. J Neurosci 27:3663–3676

    PubMed  CAS  Google Scholar 

  • van Kuyck K, Gabriels L, Cosyns P, Arckens L, Sturm V, Rasmussen S, Nuttin B (2007) Behavioural and physiological effects of electrical stimulation in the nucleus accumbens: a review. Acta Neurochir Suppl 97:375–391

    PubMed  Google Scholar 

  • Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Babler A, Vogel H, Hell D (1998) Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport 9:3897–3902

    PubMed  CAS  Google Scholar 

  • von Euler G (1991) Biochemical characterization of the intramembrane interaction between neurotensin and dopamine D2 receptors in the rat brain. Brain Res 561:93–98

    Google Scholar 

  • Whitty A (2008) Cooperativity and biological complexity. Nat Chem Biol 4:435–439

    PubMed  CAS  Google Scholar 

  • Williams DH, Stephens E, O’Brien DP, Zhou M (2004) Understanding noncovalent interactions: ligand binding energy and catalytic efficiency from ligand-induced reductions in motion within receptors and enzymes. Angew Chem Int Ed Engl 43:6596–6616

    PubMed  CAS  Google Scholar 

  • Williamson JR (2008) Cooperativity in macromolecular assembly. Nat Chem Biol 4:458–465

    PubMed  CAS  Google Scholar 

  • Young KA, Manaye KF, Liang C, Hicks PB, German DC (2000) Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia. Biol Psychiatry 47:944–953

    PubMed  CAS  Google Scholar 

  • Zuardi AW, Crippa JA, Hallak JE, Moreira FA, Guimaraes FS (2006a) Cannabidiol, a Cannabis sativa constituent, as an antipsychotic drug. Braz J Med Biol Res 39:421–429

    PubMed  CAS  Google Scholar 

  • Zuardi AW, Hallak JE, Dursun SM, Morais SL, Sanches RF, Musty RE, Crippa JA (2006b) Cannabidiol monotherapy for treatment-resistant schizophrenia. J Psychopharmacol 20:683–686

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kjell Fuxe.

Additional information

This review is dedicated to the special issue “Brain plasticity: aging and neuropsychiatric disorders”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuxe, K., Marcellino, D., Woods, A.S. et al. Integrated signaling in heterodimers and receptor mosaics of different types of GPCRs of the forebrain: relevance for schizophrenia. J Neural Transm 116, 923–939 (2009). https://doi.org/10.1007/s00702-008-0174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0174-9

Keyword

Navigation