Skip to main content
Log in

Neurotransmitter receptor heteromers in neurodegenerative diseases and neural plasticity

  • Basic Neurosciences, Genetics and Immunology - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Metabotropic receptors for neurotransmitters on the plasma membrane of neurons are forming homo- hetero- dimers and even homo- or hetero-oligomers. Neurotransmission has been studied assuming that these G-protein-coupled receptors were monomers. Then, on considering receptor dimers, we are entering a new era for the understanding how neurotransmitter receptors decode signals originating at the nervous system. At the moment it is becoming clear that receptor homo and hetero-oligomers provide signaling diversity, help to understand synaptic plasticity and open new therapeutic potential as targets for neurodegenerative and neuropsychiatric diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agnati LF, Fuxe K, Zini I, Lenzi P, Hökfelt T (1980) Aspects on receptor regulation and isoreceptor identification. Med Biol 58:182–187

    PubMed  CAS  Google Scholar 

  • Agnati LF, Fuxe K, Zoli M, Rondanini C, Ogren SO (1982) New vistas on synaptic plasticity: the receptor mosaic hypothesis. Med Biol 60:183–190

    PubMed  CAS  Google Scholar 

  • Agnati LF, Fuxe K, Torvinen M, Genedani S, Franco R, Watson S, Nussdorfer GG, Leo G, Guidolini D (2005) New methods to evaluate colocalization of fluorophores in immunocytochemical preparations as exemplified by a study on A2A and D2 receptors in Chinese hamster ovary cells. J Histochem Cytochem 53:941–953

    Article  PubMed  CAS  Google Scholar 

  • Albizu L, Balestre M-N, Breton C, Pin J-P, Manning M, Mouillac B, Barberis C, Durroux T (2006) Probing the existence of G-protein-coupled receptor dimers by positive and negative ligand-dependent cooperative binding. Mol Phamacol 70:1783–1791

    Article  CAS  Google Scholar 

  • Avissar S, Amitai G, Sokolovsky M (1983) Oligomeric structure of muscarinic receptors is shown by photoaffinity labeling: subunit assembly may explain high- and low-affinity agonist states. Proc Natl Acad Sci USA 80:156–159

    Article  PubMed  CAS  Google Scholar 

  • Burgueño J, Blake DJ, Benson MA, Tinsley CL, Esapa CT, Canela EI, Penela P, Mallol J, Mayor F Jr, Lluis C, Franco R, Ciruela F (2003) The adenosine A(2A) receptor interacts with the actin-binding protein alpha-actinin. J Biol Chem 278:37545–37552

    Article  PubMed  CAS  Google Scholar 

  • Carriba P, Ortiz O, Patkar K, Justinova Z, Stroik J, Themann A, Muller C, Woods AS, Hope BT, Ciruela F, Casadó V, Canela EI, Lluis C, Goldberg SR, Moratalla R, Franco R, Ferré S (2007) Striatal adenosine A(2A) and cannabinoid CB(1) receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. NeuropsychoPharmacology 32:2249–2259

    Article  PubMed  CAS  Google Scholar 

  • Carriba P, Navarro G, Ciruela F, Ferré S, Casadó V, Agnati L, Cortés A, Mallol J, Fuxe K, Canela EI, Lluis C, Franco R (2008) Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nat Methods 5:727–733

    Article  PubMed  CAS  Google Scholar 

  • Casadó V, Cortes A, Ciruela F, Mallol J, Ferré S, Lluis C, Canela EI, Franco R (2007) Old and new ways to calculate the affinity of agonists and antagonists interacting with G-protein-coupled monomeric and dimeric receptors: the receptor-dimer cooperativity index. Pharmacol Ther 16:343–354

    Article  CAS  Google Scholar 

  • Ciruela F, Escriche M, Burgueño J, Angulo E, Casadó V, Soloviev MM, Canela EI, Mallol J, Chan WY, Lluis C, McIlhinney RA, Franco R (2001) Metabotropic glutamate 1alpha and adenosine A1 receptors assemble into functionally interacting complexes. J Biol Chem 276:18345–18351

    Article  PubMed  CAS  Google Scholar 

  • Ciruela F, Burgueño J, Casadó V, Canals M, Marcellino D, Goldberg SR, BAder M, Fuxe K, Agnati LF, Lluis C, Franco R, Ferré S, Woods AS (2004) Combining mass spectrometry and pull-down techniques for the study of receptor heteromerization. Direct epitope–epitope electrostatic interactions between adenosine A(2A) and dopamine D-2 receptors. Anal Chem 76:5354–5363

    Article  PubMed  CAS  Google Scholar 

  • Ciruela F, Casadó V, Rodrigues RJ, Luján R, Burgueño J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortés A, Canela EI, López-Giménez JF, Milligan G, Lluis C, Cunha RA, Ferré S, Franco R (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1–A2A receptor heteromers. J Neurosci 26:2080–2087

    Article  PubMed  CAS  Google Scholar 

  • Colquhoun D (1973) The relationship between classical and cooperative models for drug action. In: Rang HP (ed) A symposium on drug receptors. University Park Press, Baltimore, pp 149–182

    Google Scholar 

  • Costa T, Herz A (1989) Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci USA 86:7321–7325

    Article  PubMed  CAS  Google Scholar 

  • Del Castillo J, Katz B (1957) Interaction at end-plate receptors between different choline derivatives. Proc R Soc Ser B 146:369–381

    Article  CAS  Google Scholar 

  • De Lean A, Stadel JM, Lefkowitz RJ (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem 255:7108–7117

    PubMed  Google Scholar 

  • Dunwiddie TV (1985) The physiological role of adenosine in the central nervous system. Int Rev Neurobiol 27:63–139

    Article  PubMed  CAS  Google Scholar 

  • Ferré S, von Euler G, Johansson B, Fredholm BB, Fuxe K (1991) Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc Natl Acad Sci USA 88:7238–7241

    Article  PubMed  Google Scholar 

  • Ferré S, Ciruela F, Woods AS, Lluis C, Franco R (2007) Functional relevance of neurotransmitter receptor heteromers in the central nervous system. Trends Neurosc 30:440–446

    Article  CAS  Google Scholar 

  • Franco R, Casadó V, Ciruela F, Mallol J, Lluis C, Canela EI (1996) The cluster-arranged cooperative model: a model that accounts for the kinetics of binding to adenosine receptors. Biochemistry 35:3007–3015

    Article  PubMed  CAS  Google Scholar 

  • Franco R, Ferré S, Agnati LF, Torvinen M, Gines S, Hillion J, Casadó V, Lledo PM, Zoli Z, Lluis C, Fuxe K (2000) Evidence for adenosine/dopamine receptor interactions: indications for heteromerization. Neuropsychopharmacology 23:S50–S59

    Article  PubMed  CAS  Google Scholar 

  • Franco R, Casadó V, Mallol J, Ferré S, Fuxe K, Cortés A, Ciruela F, Lluis C, Canela EI (2005) Dimer-based model for heptaspanning membrane receptors. Trends Biochem Sci 30:360–366

    Article  PubMed  CAS  Google Scholar 

  • Franco R, Casadó V, Mallol J, Ferrada C, Ferré S, Fuxe K, Cortés A, Ciruela F, Lluis C, Canela EI (2006) The two-state dimer receptor model: a general model for receptor dimers. Mol Pharmacol 69:1905–1912

    Article  PubMed  CAS  Google Scholar 

  • Fraser CM, Venter JC (1982) The size of the mammalian lung beta 2-adrenergic receptor as determined by target size analysis and immunoaffinity chromatography. Biochem Biophys Res Commun 109:21–29

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Agnati LF, Benfenati F, Cimmino M, Algeri S, Hökfelt T, Mutt V (1981) Modulation by cholecystokinins of 3H-spiroperidol binding in rat striatum: evidence for increased affinity and reduction in the number of binding sites. Acta Physiol Scand 113:567–569

    Article  PubMed  CAS  Google Scholar 

  • Ginés S, Hillion J, Torvinen M, Le Crom S, Casadó V, Canela EI, Rondin S, Lew JY, Watson S, Zoli M, Agnati LF, Verniera P, Lluis C, Ferré S, Fuxe K, Franco R (2000) Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci USA 97:8606–8611

    Article  PubMed  Google Scholar 

  • Hall DA (2000) Modeling the functional effects of allosteric modulators at pharmacological receptors: an extension of the two-state model of receptor activation. Mol Pharmacol 58:1412–1423

    PubMed  CAS  Google Scholar 

  • Hillion J, Canals M, Torvinen M, Casadó V, Scott R, Terasmaa A, Hansson A, Watson S, Olah ME, Mallol J, Canela EI, Zoli M, Agnati LF, Ibanez CF, Lluis C, Franco R, Ferré S, Fuxe K (2002) Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J Biol Chem 277:18091–18097

    Article  PubMed  CAS  Google Scholar 

  • Kearn CS, Blake-Palmer K, Daniel R, Mackie K, Glass M (2005) Concurrent stimlation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol Pharmacol 67:1697–1704

    Article  PubMed  CAS  Google Scholar 

  • Kunishima N, Shimada Y, Tsuji Y, Sato T, Yamamoto M, Kumasaka T, Nakanishi S, Jingami H, Morikawa K (2000) Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407:971–977

    Article  PubMed  CAS  Google Scholar 

  • Lee SP, So CH, Rashid AJ, Varghese G, Cheng R, Lanca AJ, O’Dowd BF, George SR (2004) Dopamine D1 and D2 receptor co-activation generates a novel phospholipase C-mediated calcium signal. J Biol Chem 279:35671–35678

    Article  PubMed  CAS  Google Scholar 

  • Lorenzen A, Beukers MW, van der Graaf PH, Lang H, van Muijlwijk- Koezen J, de Groote M (2002) Modulation of agonist responses at the A1 adenosine receptor by an irreversible antagonist, receptor-G protein uncoupling and by the G protein activation state. Biochem Pharmacol 64:1251–1265

    Article  PubMed  CAS  Google Scholar 

  • Maggio R, Vogel Z, Wess J (1993) Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular “cross-talk” between G-protein-linked receptors. Proc Natl Acad Sci USA 90:3103–3107

    Article  PubMed  CAS  Google Scholar 

  • Maggio R, Barbier P, Colelli A, Salvadori F, Demontis G, Corsini GU (1999) G protein-linked receptors: pharmacological evidence for the formation of heterodimers. J Biol Chem 291:251–257

    CAS  Google Scholar 

  • Marcellino D, Ferré S, Casadó V, Cortés A, Le Foll B, Mazzola C, Drago F, Saur O, Stara H, Soriano A, Barnes C, Goldberg SR, Lluis C, Fuxe K, Franco R (2008) Identification of dopamine D1–D3 heteromers: indications for a role of synergistic D1–D3 receptor interactions in the striatum. J Biol Chem 283:26016–26025

    Article  PubMed  CAS  Google Scholar 

  • Maurel D, Comps-Agrar L, Brock C, Rives ML, Bourrier E, Ayoub MA, Bazin H, Tinel N, Durroux T, Prézeau L, Trinquet E, Pin JP (2008) Cell-surface protein–protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 5:561–567

    Article  PubMed  CAS  Google Scholar 

  • Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106:381–390

    Article  PubMed  CAS  Google Scholar 

  • Onaran HO, Costa T, Rodbard D (1993) Betagamma subunits of guanine nucleotide-binding proteins and regulation of spontaneous receptor activity: thermodynamic model for the interaction between receptors and guanine nucleotide-binding protein subunits. Mol Pharmacol 43:245–256

    PubMed  CAS  Google Scholar 

  • Rashid AJ, So CH, Kong MM, Furtak T, El-Ghundi M, Cheng R, O’Dowd BF, George SR (2007) D1–D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci USA 104:654–659

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen SGF, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VRP, Sanishivi R, Fischetti RF, Schertler GFX, Weis WI, Kobilka BK (2007) Crustal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387

    Article  PubMed  CAS  Google Scholar 

  • Robbins MJ, Ciruela F, Rhodes A, McIlhinney RAJ (1999) Characterization of the dimerization of metabotropic glutamate receptors using an N-terminal truncation of mGluR1alpha. J Neurochem 72:2539–2547

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum DM, Cherezov D, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into beta2 adrenergic receptor function. Science 318:1266–1273

    Article  PubMed  CAS  Google Scholar 

  • Samama P, Cotecchia S, Costa T, Lefkowitz RJ (1993) A mutation-induced activated state of the beta2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 268:4625–4636

    PubMed  CAS  Google Scholar 

  • Sarrió S, Casadó V, Escriche M, Ciruela F, Mallol J, Canela EI, Lluis C, Franco R (2000) The heat shock cognate protein hsc73 assembles with A(1) adenosine receptors to form functional modules in the cell membrane. Mol Cell Biol 20:5164–5174

    Article  PubMed  Google Scholar 

  • Saura C, Ciruela F, Casadó V, Canela EI, Mallol J, Lluis C, Franco R (1996) Adenosine deaminase interacts with A(1) adenosine receptors in pig brain cortical membranes. J Neurochem 66:1675–1682

    Article  PubMed  CAS  Google Scholar 

  • Thron CD (1973) On the analysis of pharmacological experiments in terms of an allosteric receptor model. Mol Pharmacol 9:1–9

    PubMed  CAS  Google Scholar 

  • Torvinen M, Torri C, Tombesi A, Marcellino D, Watson S, Lluis C, Franco R, Fuxe K, Agnati LF (2005) Trafficking of adenosine A2A and dopamine D2 receptors. J Mol Neurosci 25:191–200

    Article  PubMed  CAS  Google Scholar 

  • Weiss JM, Morgan PH, Lutz MW, Kenakin TP (1996a) The cubic ternary complex receptor-occupancy model I. Model description. J Theor Biol 178:151–167

    Article  CAS  Google Scholar 

  • Weiss JM, Morgan PH, Lutz MW, Kenakin TP (1996b) The cubic ternary complex Receptor-occupancy model II. Understanding apparent affinity. J Theor Biol 178:169–182

    Article  CAS  Google Scholar 

  • Weiss JM, Morgan PH, Lutz MW, Kenakin TP (1996c) The cubic ternary complex receptor-occupancy model III. Resurrecting efficacy. J Theor Biol 181:381–397

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Franco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franco, R. Neurotransmitter receptor heteromers in neurodegenerative diseases and neural plasticity. J Neural Transm 116, 983–987 (2009). https://doi.org/10.1007/s00702-008-0148-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0148-y

Keywords

Navigation