Skip to main content
Log in

Effects of cholinesterase inhibitors on rat nicotinic receptor levels in vivo and in vitro

  • Alzheimer's Disease and Related Disorders - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Cholinesterase inhibitors (ChEIs) are the mainstay of treatment for AD but differ by secondary mechanisms of action. We determine the effects of sub-chronic dosing of ChEIs on α7 and non-α7 nAChRs and determine if differences can be observed between them. Sprague–Dawley rats were administered donepezil, galantamine; rivastigmine at two doses each, in saline SQ twice daily or with nicotine (0.4 mg/kg) as a positive control. After 14 days the animals were sacrificed, and the levels of nAChRs were measured using [3H]-EPI to measure non-α7 nAChRs and [3H]-MLA to measure α7 nAChRs. In the cortex, all compounds tested at the higher doses significantly increased the levels of both [3H]-EPI and [3H]-MLA. In the hippocampus all compounds significantly increased [3H]-EPI but had no effect on [3H]-MLA binding. No effects were observed in the striatum with treatment. There were no differences observed among the ChEIs. In cell cultures, none of the ChEIs increased non-α7 or α7 receptor binding. Treatment with ChEIs result in similar increases in receptor levels which suggest that the increases in nAChRs may be due simply to the increases in synaptic levels of acetylcholine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ChEI:

Acetylcholinesterase inhibitor

nAChR:

Nicotinic acetylcholine receptor

EPI:

Epibatidine

MLA:

Methyllyconitine

References

  • Albuquerque E, Alkondon M, Pereira E, Castro N, Schrattenholz A, Barbosa C (1996) Properties of neuronal nicotinic acetylcholine receptors, pharmacological characterization and modulation of synaptic function. J Pharmacol Exp Ther 280:1117–1136

    Google Scholar 

  • Arias E, Gallego-Sandin S, Villarroya M, Garcia AG, Lopez MG (2005) Unequal neuroprotection afforded by the acetylcholinesterase inhibitors galantamine, donepezil, and rivastigmine in SH-SY5Y neuroblastoma cells: role of nicotinic receptors. J Pharmacol Exp Ther 315(3):1346–1353

    Article  PubMed  CAS  Google Scholar 

  • Aubert D, Araujo M, Cecyre D, Robitaille Y, Gauthier S, Quirion E (1992) Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s diseases. J Neurochem 58:529–541

    Article  PubMed  CAS  Google Scholar 

  • Banerjee C, Nyengaard JR, Wevers A, de Vos RA, Jansen-Steur EN, Lindstrom J, Pilz K, Nowacki S, Bloch W, Schroder H (2000) Cellular expression of α7 nicotinic acetylcholine receptor protein in the temporal cortex in Alzheimer’s and Parkinson’s disease—a stereological approach. Neurobiol Dis 7:666–672

    Article  PubMed  CAS  Google Scholar 

  • Barik J, Dajas-Bailador F, Wonnacott S (2005) Cellular responses to nicotinic receptor activation are decreased after prolonged exposure to galantamine in human neuroblastoma cells. Br J Pharmacol 145(8):1084–1092

    Article  PubMed  CAS  Google Scholar 

  • Barnes CA, Meltzer J, Houston F, Orr G, McGann K, Wenk GL (2000) Chronic treatment of old rats with donepezil or galantamine: effects on memory, hippocampal plasticity and nicotinic receptors. Neuroscience 99:17–23

    Article  PubMed  CAS  Google Scholar 

  • Barrantes GE, Rogers AT, Lindstrom J, Wonnacott S (1995) α Bungarotoxin binding sites in rat hippocampal and cortical cultures: initial characterization, colocalization with α7 subunits and upregulation by chronic nicotine treatment. Brain Res 672:228–236

    Article  PubMed  CAS  Google Scholar 

  • Bhat RV, Turner SL, Marks MJ, Collins AC (1990) Selective changes in sensitivity to cholinergic agonists and receptor changes elicited by continuous physostigmine infusion. J Pharmacol Exp Ther 255:187–196

    PubMed  CAS  Google Scholar 

  • Clarke PB, Schwartz RD, Paul SM, Pert CB, Pert A (1985) Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin. J Neurosci 5(5):1307–1315

    PubMed  CAS  Google Scholar 

  • Cooper E, Couturier S, Ballivet M (1991) Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature 350(6315):235–238

    Article  PubMed  CAS  Google Scholar 

  • Court J, Spurden D, Lloyd S, McKeith I, Ballard C, Cairns N, Kerwin R, Perry R, Perry EK (1999) Neuronal nicotinic receptors in dementia with lewy bodies and schizophrenia: α-bungarotoxin and nicotine binding in the thalamus. J Neurochemistry 73:1590–1597

    Article  CAS  Google Scholar 

  • Davies P, Feisullin S (1981) Postmortem stability of α-bungarotoxin binding sites in mouse and human brain. Brain Res 216:449–454

    Article  PubMed  CAS  Google Scholar 

  • Davies AR, Hardick DJ, Blagbrough IS, Potter BV, Wolstenholme AJ, Wonnacott S (1999) Characterisation of the binding of [3H]methyllycaconitine: a new radioligand for labelling alpha 7-type neuronal nicotinic acetylcholine receptors. Neuropharmacology 38(5):679–690

    Article  PubMed  CAS  Google Scholar 

  • Flynn DD, Mash DC (1986) Characterization of L-[3H]Nicotine binding in human cerebral cortex: comparison between Alzheimer’s disease and the normal. J Neurochemistry 47:1948–1954

    Article  CAS  Google Scholar 

  • Geerts H, Guillaumat PO, Granthham C, Bode W, Anciaux K, Sachak S (2005) Brain levels and acetylcholinesterase inhibition with galanthamine and donepezil in rats mice and rabits. Brain Res 1033:186–193

    Article  PubMed  CAS  Google Scholar 

  • Giacobini E, Spiegel R, Enz A, Veroff AE, Cutler NR (2002) Inhibition of acetyl- and butyryl-cholinesterase in the cerebrospinal fluid of patients with Alzheimer’s disease by rivastigmine: correlation with cognitive benefit. J Neural Transm 109:1053–1065

    Article  PubMed  CAS  Google Scholar 

  • Hellstrom-Lindahl E, Moore H, Nordberg A (2000) Increased levels of tau protein in SH-SY5Y cells after treatment with cholinesterase inhibitors and nicotinic agonists. J Neurochem 74(2):777–784

    Article  PubMed  CAS  Google Scholar 

  • Kadir A, Darreh-Shori T, Almkvist O, Wall A, Långström B, Nordberg A (2007) Changes in brain 11C-nicotine binding sites in patients with mild Alzheimer’s disease following rivastigmine treatment as assessed by PET. Psychopharmacology (Berl) 191(4):1005–1014

    Article  CAS  Google Scholar 

  • Kihara T, Shimohama S, Sawada H, Kimura J, Kume T, Kochiyama H, Maeda T, Akaike A (1997) Nicotinic receptor stimulation protects neurons against beta-amyloid toxicity. Ann Neurol 42:159–163

    Article  PubMed  CAS  Google Scholar 

  • Lai A, Parameswaran N, Khwaja M, Whiteaker P, Lindstrom JM, Fan H, McIntosh JM, Grady SR, Quik M (2005) Long-term nicotine treatment decreases striatal alpha 6* nicotinic acetylcholine receptor sites and function in mice. Mol Pharmacol 67(5):1639–1647

    Article  PubMed  CAS  Google Scholar 

  • Lamb PW, Melton MA, Yakel JL (2005) Inhibition of neuronal nicotinic acetylcholine receptor channels expressed in Xenopus oocytes by beta-amyloid1–42 peptide. J Mol Neurosci 27(1):13–21

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Kawai H, Berg DK (2001) β-Amyloid peptide blocks the response of α7-containing nicotinic receptors on hippocampal neurons. Proc Natl Acad Sci USA 98:4734–4739

    Article  PubMed  CAS  Google Scholar 

  • Maelicke A, Samochocki M, Jostock J, Fehrenbacher A, Ludwig J, Albuquerque EX, Zerlin M (2001) Allosteric sensitization of nicotinic receptors by galanthamine, a new treatment strategy for Alzheimer’s disease. Biol Psychiatry 49:279–288

    Article  PubMed  CAS  Google Scholar 

  • Martin-Ruiz CA, Court JA, Molnar E, Lee M, Gotti C, Mamalaki A, Tsouloufis T, Tzartos S, Ballard C, Perry RH, Perry EK (1999) α4 but not α3 and α7 nicotinic etylcholine receptor subunits are lost from the temporal cortex in Alzheimer’s disease. J Neurochem 73:1635–1640

    Article  PubMed  CAS  Google Scholar 

  • Maurice T, Meunier J, Feng B, Ieni J, Monaghan DT (2006) Interaction with sigma(1) protein, but not N-methyl-d-aspartate receptor, is involved in the pharmacological activity of donepezil. J Pharmacol Exp Ther 317(2):606–614

    Article  PubMed  CAS  Google Scholar 

  • Millar NS (2003) Assembly and subunit diversity of nicotinic acetylcholine receptors. Biochem Soc Trans 31:869–874

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini M, Tessari M, Tarter G, Merlo Pich E, Chiamulera C, Bunnemann B (2002) Upregulation of [3H]methyllycaconitine binding sites following continuous infusion of nicotine, without changes of alpha7 or alpha6 subunit mRNA: an autoradiography and in situ hybridization study in rat brain. Eur J Neurosci 16(9):1633–1646

    Article  PubMed  Google Scholar 

  • Nilsson-Håkansson L, Lai Z, Nordberg A (1990) Tetrahydroaminoacridine induces opposite changes in muscarinic and nicotinic receptors in rat brain. Eur J Pharmacol 186(2–3):301–305

    Article  PubMed  Google Scholar 

  • Nordberg A (1994) Human nicotinic receptors—their role in aging and dementia. Neurochem Int 25:93–97

    Article  PubMed  CAS  Google Scholar 

  • Nordberg A (2006) Mechanisms behind the neuroprotective actions of cholinesterase inhibitors in Alzheimer disease. Alzheimer Dis Assoc Disord 20(2 Suppl 1):S12–S18

    Google Scholar 

  • Nordberg A, Alafuzoff I, Winblad B (1992a) Nicotinic and muscarinic subtypes in the human brain: changes with aging and dementia. J Neurosci Res 31:103–111

    Article  PubMed  CAS  Google Scholar 

  • Nordberg A, Lilja A, Lundqvist H, Hartvig P, Amberla P, Viitanen M, Warpman U, Johansson M, Hellstrom-Lindahl E, Bjurling P (1992b) Tacrine restores cholinergic nicotinic receptors and glucose metabolism in Alzheimer patients as visualized by positron emission tomography. Neurobiol Aging 13:747–758

    Article  PubMed  CAS  Google Scholar 

  • Peng X, Gerzanich V, Anand R, Whiting PJ, Lindstrom J (1994) Nicotine-induced increase in neuronal nicotinic receptors results from a decrease in the rate of receptor turnover. Mol Pharmacol 46(3):523–530

    PubMed  CAS  Google Scholar 

  • Perry EK, Smith CJ, Court JA, Perry RH (1990) Cholinergic nicotinic and muscarinic receptors in dementia of Alzheimer, Parkinson, and Lewy body types. J Neural Transm 2:149–158

    Article  CAS  Google Scholar 

  • Perry EK, Morris CM, Court JA, Cheng A, Fairbairn AF, McKeith IG, Irving D, Brown A, Perry RH (1995) Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease: possible index of early neuropathology. Neuroscience 64:385–395

    Article  PubMed  CAS  Google Scholar 

  • Perry DC, Mao D, Gold AB, McIntosh JM, Pezzullo JC, Kellar KJ (2007) Chronic nicotine differentially regulates alpha6- and beta3-containing nicotinic cholinergic receptors in rat brain. J Pharmacol Exp Ther 322(1):306–315

    Article  PubMed  CAS  Google Scholar 

  • Pym L, Kemp M, Raymond-Delpech V, Buckingham S, Boyd CA, Sattelle D (2005) Subtype-specific actions of beta-amyloid peptides on recombinant human neuronal nicotinic acetylcholine receptors (alpha7, alpha4beta2, alpha3beta4) expressed in Xenopus laevis oocytes. Br J Pharmacol 146(7):964–971

    Article  PubMed  CAS  Google Scholar 

  • Reid RT, Sabbagh MN (2003) Effects of donepezil treatment on rat nicotinic acetylcholine receptor levels in vivo and in vitro. J Alzheimer’s Dis 5(6):429–436

    CAS  Google Scholar 

  • Reid RT, Sabbagh MN, Corey-Bloom J, Tiraboschi P, Thal LJ (2000) Nicotinic receptor losses in dementia with Lewy bodies: comparisons with Alzheimer’s disease. Neurobiol Aging 21:741–746

    Article  CAS  Google Scholar 

  • Rinne JO, Myllkyla T, Lonnberg P, Marjamaki P (1991) A post mortem study of brain nicotinic receptors in Parkinson’s and Alzheimer’s disease. Brain Res 547:167–170

    Article  PubMed  CAS  Google Scholar 

  • Sabbagh MN, Reid RT, Corey-Bloom J, Rao TS, Hansen LA, Alford M, Masliah E, Adem A, Lloyd GK, Thal LJ (1998) Correlation of nicotinic binding with neurochemical markers in Alzheimer’s disease. J Neural Transm 105:709–717

    Article  PubMed  CAS  Google Scholar 

  • Sabbagh MN, Reid RT, Hansen LA, Alford M, Thal LJ (2001) Correlation of nicotinic receptor binding with clinical and neuropathological changes in Alzheimer’s disease and dementia with Lewy bodies. J Neural Transm 108:1149–1157

    Article  PubMed  CAS  Google Scholar 

  • Sabbagh MN, Farlow MR, Relkin NR, Beach TG (2006) Do cholinergic therapies have disease modifying effects in Alzheimer’s disease? Alzheimers Dement 2(2):118–125

    Article  CAS  Google Scholar 

  • Samochocki M, Zerlin M, Jostock R, Groot Kormelink PJ, Luyten WH, Albuquerque EX, Maelicke A (2000) Galantamine is an allosterically potentiating ligand of the human alpha4/beta2 nAChR. Acta Neurol Scand Suppl 176:68–73

    Article  PubMed  CAS  Google Scholar 

  • Scali C, Casamenti F, Bellucci A, Costagli C, Schmidt B, Pepu G (2002) Effect of subchronic administration of metrifonate, rivastigmine and donepezil on brain acetylcholine on aged F344 rats. J Neural Transm 109:1067–1080

    Article  PubMed  CAS  Google Scholar 

  • Schrattenholz A, Pereira EF, Roth U, Weber KH, Albuquerque EX, Maelicke A (1996) Agonist responses of neuronal nicotinic acetylcholine receptors are potentiated by a novel class of allosterically acting ligands. Mol Pharmacol 49(1):1–6

    PubMed  CAS  Google Scholar 

  • Schroder H, Giacobini E, Struble RG, Zilles K, Maelicke A (1991) Nicotinic cholinoceptive neurons of the frontal cortex are reduced in Alzheimer’s disease. Neurobiology 12:259–262

    CAS  Google Scholar 

  • Shimohama S, Kihara T (2001) Nicotinic receptor-mediated protection against beta-amyloid neurotoxicity. Biol Psychiatry 49(3):233–239

    Article  PubMed  CAS  Google Scholar 

  • Smulders CJ, Zwart R, Bermudez I, van Kleef RG, Groot-Kormelink PJ, Vijverberg HP (2005) Cholinergic drugs potentiate human nicotinic alpha4beta2 acetylcholine receptors by a competitive mechanism. Eur J Pharmacol 509(2–3):97–108

    Article  PubMed  CAS  Google Scholar 

  • Snape MF, Misra A, Murray TK, De Souza RJ, Williams JL, Cross AJ, Green AR (1999) A comparative study in rats of the in vitro and in vivo pharmacology of the acetylcholinesterase inhibitors tacrine, donepezil and NXX-066. Neuropharmacology 38(1):181–93

    Article  PubMed  CAS  Google Scholar 

  • Spencer JP, Weil A, Hill K, Hussain I, Richardson JC, Cusdin FS, Chen YH, Randall AD (2006) Transgenic mice over-expressing human beta-amyloid have functional nicotinic alpha 7 receptors. Neuroscience 137(3):795–805

    Article  PubMed  CAS  Google Scholar 

  • Storch A, Schrattenholz A, Cooper JC, Abdel-Ghani EM, Gutbrod O, Weber KH, Reinhardt S, Lobron C, Hermsen B, Soskic V (1995) Physostigmine, galanthamine and codeine act as ‘noncompetitive nicotinic receptor agonists’ on clonal rat pheochromocytoma cells. Eur J Pharmacol 290:207–219

    Article  PubMed  CAS  Google Scholar 

  • Sugaya K, Giacobini E, Chiappinelli VA (1990) Nicotinic acetylcholine receptor subtypes in human frontal cortex: changes in Alzheimer’s disease. J Neurosci Res 27:349–359

    Article  PubMed  CAS  Google Scholar 

  • Svensson AL, Nordberg A (1996) Tacrine interacts with an allosteric activator site on alpha 4 beta 2 nAChRs in M10 cells. Neuroreport 7:2201–2205

    Article  PubMed  CAS  Google Scholar 

  • Svensson AL, Nordberg A (1997) Alzheimer’s disease biology, diagnosis and therapeutics. Iqubal K et al (ed) Wiley, Chichester

  • Svensson AL, Nordberg A (1998) Tacrine and donepezil attenuate the neurotoxic effect of Aβ(25–35) in rat PC12 cells. Neuroreport 9:1519–1522

    Article  PubMed  CAS  Google Scholar 

  • Villarroya M, García AG, Marco-Contelles J, López MG (2007) An update on the pharmacology of galantamine. Expert Opin Investig Drugs 16(12):1987–1998

    Article  PubMed  CAS  Google Scholar 

  • Wang HY, Lee DH, Davis CB, Shank RP (2000) Amyloid peptide Aβ(1-42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochemistry 75:1155–1161

    Article  CAS  Google Scholar 

  • Whiteaker P, Sharples CG, Wonnacott S (1998) Agonist-induced up-regulation of alpha4beta2 nicotinic acetylcholine receptors in M10 cells: pharmacological and spatial definition. Mol Pharmacol 53(5):950–962

    PubMed  CAS  Google Scholar 

  • Whiteaker P, Davies RL, Marks MJ, Blackbrough IS, Potter BVL, Wolstenholme AJ, Collins AJ, Wonnacott S (1999) An autoradiographic study of the distribution of binding sites for the novel a7 selective nicotinic ligand [3-H] methyllycaconitine in the mouse brain. Eur J Neurosci 11:2689–2696

    Article  PubMed  CAS  Google Scholar 

  • Woodruff-Pak DS, Vogel RW, Wenk GL (2001) Galantamine: effect on nicotinic receptor binding, acetylcholinesterase inhibition, and learning. Proc Natl Acad Sci USA 98:2089–2094

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by an unrestricted grant from Eisai Inc. and Pfizer Inc., the Erik and Ese Banck Clinical Research Center, NIA P30 AG 019610 and the Sun Health Research Institute.

Disclosures: Dr Reid has nothing to disclose. Dr Sabbagh is on the speaker’s bureau for Pfizer, Eisai, Forest and Novartis. He is a consultant for Lilly and Eisai. Dr Sabbagh receives clinical research funding from Eisai, Pfizer, GSK, Novartis, Avid, Wyeth, Lilly, Medivation, Abbott and Elan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Reid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reid, R.T., Sabbagh, M.N. Effects of cholinesterase inhibitors on rat nicotinic receptor levels in vivo and in vitro. J Neural Transm 115, 1437–1444 (2008). https://doi.org/10.1007/s00702-008-0107-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0107-7

Keywords

Navigation