Skip to main content

Advertisement

Log in

Early surgical intervention for acute spinal cord injury: time is spine

  • Mini-review (by Invitation)
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Acute traumatic spinal cord injury (tSCI) is a devastating occurrence that significantly contributes to global morbidity and mortality. Surgical decompression with stabilization is the most effective way to minimize the damaging sequelae that follow acute tSCI. In recent years, strong evidence has emerged that supports the rationale that early surgical intervention, within 24 h following the initial injury, is associated with a better prognosis and functional outcomes. In this review, we have summarized the evidence and elaborated on the nuances of this concept. Additionally, we have reviewed further concepts that stem from “time is spine,” including earlier cutoffs less than 24 h and the challenging entity of central cord syndrome, as well as the emerging concept of adequate surgical decompression. Lastly, we identify barriers to early surgical care for acute tSCI, a key aspect of spine care that needs to be globally addressed via research and policy on an urgent basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aarabi B, Olexa J, Chryssikos T et al (2019) Extent of spinal cord decompression in motor complete (American Spinal Injury Association Impairment Scale Grades A and B) traumatic spinal cord injury patients: post-operative magnetic resonance imaging analysis of standard operative approaches. J Neurotrauma 36(6):862–876

    Article  PubMed  PubMed Central  Google Scholar 

  2. Aarabi B, Sansur CA, Ibrahimi DM, Simard JM, Hersh DS, Le E, Diaz C, Massetti J, Akhtar-Danesh N (2017) Intramedullary lesion length on postoperative magnetic resonance imaging is a strong predictor of ASIA Impairment Scale grade conversion following decompressive surgery in cervical spinal cord injury. Neurosurgery 80(4):610–620

    Article  PubMed  Google Scholar 

  3. Aarabi B, Simard JM, Kufera JA et al (2012) Intramedullary lesion expansion on magnetic resonance imaging in patients with motor complete cervical spinal cord injury. J Neurosurg Spine 17(3):243–250

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, Fehlings MG (2017) Traumatic spinal cord injury. Nat Rev Dis Primers 3:17018

    Article  PubMed  Google Scholar 

  5. Alkabie S, Boileau AJ (2016) The role of therapeutic hypothermia after traumatic spinal cord injury—a systematic review. World Neurosurg 86:432–449

    Article  PubMed  Google Scholar 

  6. Amemori T, Romanyuk N, Jendelova P, Herynek V, Turnovcova K, Prochazka P, Kapcalova M, Cocks G, Price J, Sykova E (2013) Human conditionally immortalized neural stem cells improve locomotor function after spinal cord injury in the rat. Stem Cell Res Ther 4(3):68

    Article  PubMed  PubMed Central  Google Scholar 

  7. Andreoli C, Colaiacomo MC, Rojas Beccaglia M, Di Biasi C, Casciani E, Gualdi G (2005) MRI in the acute phase of spinal cord traumatic lesions: relationship between MRI findings and neurological outcome. Radiol Med 110(5–6):636–645

    PubMed  Google Scholar 

  8. Aoyama T, Hida K, Akino M, Yano S, Iwasaki Y, Saito H (2007) Ultra-early MRI showing no abnormality in a fall victim presenting with tetraparesis. Spinal Cord 45(10):695–699

    Article  CAS  PubMed  Google Scholar 

  9. Badhiwala JH, Wilson JR, Fehlings MG (2019) Global burden of traumatic brain and spinal cord injury. Lancet Neurol 18(1):24–25

    Article  PubMed  Google Scholar 

  10. Badhiwala JH, Wilson JR, Harrop JS, Vaccaro AR, Aarabi B, Geisler FH, Fehlings MG (2022) Early vs late surgical decompression for central cord syndrome. JAMA Surg 157(11):1024–1032

    Article  PubMed  Google Scholar 

  11. Badhiwala JH, Wilson JR, Witiw CD, Harrop JS, Vaccaro AR, Aarabi B, Grossman RG, Geisler FH, Fehlings MG (2021) The influence of timing of surgical decompression for acute spinal cord injury: a pooled analysis of individual patient data. Lancet Neurol 20(2):117–126

    Article  CAS  PubMed  Google Scholar 

  12. Balas M, Prömmel P, Nguyen L et al (2021) Reality of accomplishing surgery within 24 hours for complete cervical spinal cord injury: clinical practices and safety. J Neurotrauma 38(21):3011–3019

    Article  PubMed  Google Scholar 

  13. Balentine JD (1978) Pathology of experimental spinal cord trauma. I. The necrotic lesion as a function of vascular injury. Lab Invest 39(3):236–253

    CAS  PubMed  Google Scholar 

  14. Batchelor PE, Skeers P, Antonic A, Wills TE, Howells DW, Macleod MR, Sena ES (2013) Systematic review and meta-analysis of therapeutic hypothermia in animal models of spinal cord injury. PLoS One 8(8):e71317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bilgen M, Abbe R, Liu SJ, Narayana PA (2000) Spatial and temporal evolution of hemorrhage in the hyperacute phase of experimental spinal cord injury: in vivo magnetic resonance imaging. Magn Reson Med 43(4):594–600

    Article  CAS  PubMed  Google Scholar 

  16. Bock T, Heller RA, Haubruck P, Raven TF, Pilz M, Moghaddam A, Biglari B (2021) Pursuing more aggressive timelines in the surgical treatment of traumatic spinal cord injury (TSCI): a retrospective cohort study with subgroup analysis. J Clin Med Res. https://doi.org/10.3390/jcm10245977

    Article  Google Scholar 

  17. Boldin C, Raith J, Fankhauser F, Haunschmid C, Schwantzer G, Schweighofer F (2006) Predicting neurologic recovery in cervical spinal cord injury with postoperative MR imaging. Spine 31(5):554–559

    Article  PubMed  Google Scholar 

  18. Bretzner F, Gilbert F, Baylis F, Brownstone RM (2011) Target populations for first-in-human embryonic stem cell research in spinal cord injury. Cell Stem Cell 8(5):468–475

    Article  CAS  PubMed  Google Scholar 

  19. Cadotte DW, Singh A, Fehlings MG (2010) The timing of surgical decompression for spinal cord injury. F1000 Med Rep 2:67

    Article  PubMed  PubMed Central  Google Scholar 

  20. Carney N, Totten AM, O’Reilly C, Ullman JS (2017) Guidelines for the management of severe traumatic brain injury. Neurosurgery 80 (1): 6–15. PubMed Article PubMed Central

  21. Cheng H, Cao Y, Olson L (1996) Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science 273(5274):510–513

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y, Quddusi A, Harrison KA, Ryan PE, Cook DJ (2019) Selection of preclinical models to evaluate intranasal brain cooling for acute ischemic stroke. Brain Circ 5(4):160–168

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dahdaleh NS, Lawton CD, El Ahmadieh TY, Nixon AT, El Tecle NE, Oh S, Fessler RG, Smith ZA (2013) Evidence-based management of central cord syndrome. Neurosurg Focus 35(1):E6

    Article  PubMed  Google Scholar 

  24. De la Garza RR, Nakhla J, Nasser R, Jada A, Sciubba DM, Kinon MD, Yassari R (2017) The impact of hospital teaching status on timing of intervention, inpatient morbidity, and mortality after surgery for vertebral column fractures with spinal cord injury. World Neurosurg 99:140–144

    Article  Google Scholar 

  25. Dietz V (2016) Faculty Opinions recommendation of Expansion duroplasty improves intraspinal pressure, spinal cord perfusion pressure, and vascular pressure reactivity index in patients with traumatic spinal cord injury: injured spinal cord pressure evaluation study. Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature. https://doi.org/10.3410/f.725364905.793518013

  26. Dohrmann GJ, Wagner FC Jr, Bucy PC (1971) The microvasculature in transitory traumatic paraplegia. An electron microscopic study in the monkey. J Neurosurg 35(3):263–271

    Article  CAS  PubMed  Google Scholar 

  27. Dvorak MF, Fisher CG, Hoekema J, Boyd M, Noonan V, Wing PC, Kwon BK (2005) Factors predicting motor recovery and functional outcome after traumatic central cord syndrome: a long-term follow-up. Spine 30(20):2303–2311

    Article  PubMed  Google Scholar 

  28. Dvorak MF, Noonan VK, Fallah N et al (2015) The influence of time from injury to surgery on motor recovery and length of hospital stay in acute traumatic spinal cord injury: an observational Canadian cohort study. J Neurotrauma 32(9):645–654

    Article  PubMed  PubMed Central  Google Scholar 

  29. Etz CD, Weigang E, Hartert M et al (2015) Contemporary spinal cord protection during thoracic and thoracoabdominal aortic surgery and endovascular aortic repair: a position paper of the vascular domain of the European Association for Cardio-Thoracic Surgery†. Eur J Cardiothorac Surg 47(6):943–957

    Article  PubMed  Google Scholar 

  30. Fairholm DJ, Turnbull IM (1971) Microangiographic study of experimental spinal cord injuries. J Neurosurg 35(3):277–286

    Article  CAS  PubMed  Google Scholar 

  31. Fehlings MG, Pedro KM (2022) Time is spine: a clarion call to action. Brain Spine 2:100867

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fehlings MG, Rabin D, Sears W, Cadotte DW, Aarabi B (2010) Current practice in the timing of surgical intervention in spinal cord injury. Spine 35(21 Suppl):S166–S173

    Article  PubMed  Google Scholar 

  33. Fehlings MG, Tetreault LA, Wilson JR et al (2017) A clinical practice guideline for the management of patients with acute spinal cord injury and central cord syndrome: recommendations on the timing (≤24 hours versus >24 hours) of decompressive surgery. Global Spine J 7(3 Suppl):195S-202S

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fehlings MG, Vaccaro A, Wilson JR et al (2012) Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One 7(2):e32037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Feng G, Hong Y, Li L et al (2012) Anterior decompression and nonstructural bone grafting and posterior fixation for cervical facet dislocation with traumatic disc herniation. Spine 37(25):2082–2088

    Article  PubMed  Google Scholar 

  36. Flanders AE, Schaefer DM, Doan HT, Mishkin MM, Gonzalez CF, Northrup BE (1990) Acute cervical spine trauma: correlation of MR imaging findings with degree of neurologic deficit. Radiology 177(1):25–33

    Article  CAS  PubMed  Google Scholar 

  37. Fujii H, Yone K, Sakou T (1993) Magnetic resonance imaging study of experimental acute spinal cord injury. Spine 18(14):2030–2034

    Article  CAS  PubMed  Google Scholar 

  38. GBD (2016) Traumatic Brain Injury and Spinal Cord Injury Collaborators (2019) Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(1):56–87

    Google Scholar 

  39. Gee CM, Kwon BK (2022) Significance of spinal cord perfusion pressure following spinal cord injury: a systematic scoping review. J Clin Orthop Trauma 34:102024

    Article  PubMed  Google Scholar 

  40. Grimes CE, Bowman KG, Dodgion CM, Lavy CBD (2011) Systematic review of barriers to surgical care in low-income and middle-income countries. World J Surg 35(5):941–950

    Article  PubMed  Google Scholar 

  41. Hackney DB, Asato R, Joseph PM, Carvlin MJ, McGrath JT, Grossman RI, Kassab EA, DeSimone D (1986) Hemorrhage and edema in acute spinal cord compression: demonstration by MR imaging. Radiology 161(2):387–390

    Article  CAS  PubMed  Google Scholar 

  42. Hakało J, Wroński J (2004) Importance of early operative decompression of spinal cord after cervical spine injuries. Neurol Neurochir Pol 38(3):183–188

    PubMed  Google Scholar 

  43. Hansebout RR, Hansebout CR (2014) Local cooling for traumatic spinal cord injury: outcomes in 20 patients and review of the literature. J Neurosurg Spine 20(5):550–561

    Article  PubMed  Google Scholar 

  44. Hejrati N, Moghaddamjou A, Pedro K, Alvi MA, Harrop JS, Guest JD, Kwon BK, Fehlings MG (2022) Current practice of acute spinal cord injury management: a global survey of members from the AO spine. Global Spine J 21925682221116888

  45. Hosman AJF, Barbagallo G, The SCI-POEM Study Group, van Middendorp JJ (2023) Neurological recovery after early versus delayed surgical decompression for acute traumatic spinal cord injury. Bone Joint J 105-B(4):400–411

  46. Huang X, Wen L (2010) Technical considerations in decompressive craniectomy in the treatment of traumatic brain injury. Int J Med Sci 7(6):385–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Iizuka H, Yamamoto H, Iwasaki Y, Yamamoto T, Konno H (1987) Evolution of tissue damage in compressive spinal cord injury in rats. J Neurosurg 66(4):595–603

    Article  CAS  PubMed  Google Scholar 

  48. Jug M, Kejžar N, Vesel M, Al Mawed S, Dobravec M, Herman S, Bajrovic F (2016) Neurological recovery after traumatic cervical spinal cord injury is superior if surgical decompression and instrumented fusion are performed within 8 h versus 8–24 h after injury: a single centre experience. Global Spine J 6(1_suppl):s–0036

  49. Kawata K, Morimoto T, Ohashi T, Tsujimoto S, Hoshida T, Tsunoda S, Sakaki T (1993) Experimental study of acute spinal cord injury: a histopathological study. No Shinkei Geka 21(1):45–51

    CAS  PubMed  Google Scholar 

  50. Khan SN, Stansby G (2012) Cerebrospinal fluid drainage for thoracic and thoracoabdominal aortic aneurysm surgery. Cochrane Database Syst Rev 10:CD003635

    PubMed  Google Scholar 

  51. Kim KD, Lee KS, Coric D, Chang JJ, Harrop JS, Theodore N, Toselli RM (2021) A study of probable benefit of a bioresorbable polymer scaffold for safety and neurological recovery in patients with complete thoracic spinal cord injury: 6-month results from the INSPIRE study. J Neurosurg Spine 34(5):808–817

    Article  PubMed  Google Scholar 

  52. Le E, Aarabi B, Hersh DS, Shanmuganathan K, Diaz C, Massetti J, Akhtar-Danesh N (2015) Predictors of intramedullary lesion expansion rate on MR images of patients with subaxial spinal cord injury. J Neurosurg Spine 22(6):611–621

    Article  PubMed  Google Scholar 

  53. Lee D-Y, Park Y-J, Kim H-J, Ahn H-S, Hwang S-C, Kim D-H (2018) Early surgical decompression within 8 hours for traumatic spinal cord injury: is it beneficial? A meta-analysis. Acta Orthop Traumatol Turc 52(2):101–108

    Article  PubMed  Google Scholar 

  54. Lenehan B, Fisher CG, Vaccaro A, Fehlings M, Aarabi B, Dvorak MF (2010) The urgency of surgical decompression in acute central cord injuries with spondylosis and without instability. Spine 35(21 Suppl):S180–S186

    Article  PubMed  Google Scholar 

  55. Levi AD, Green BA, Wang MY, Dietrich WD, Brindle T, Vanni S, Casella G, Elhammady G, Jagid J (2009) Clinical application of modest hypothermia after spinal cord injury. J Neurotrauma 26(3):407–415

    Article  PubMed  Google Scholar 

  56. Lim PAC, Tow AM (2007) Recovery and regeneration after spinal cord injury: a review and summary of recent literature. Ann Acad Med Singapore 36(1):49–57

    Article  PubMed  Google Scholar 

  57. Liu J-M, Long X-H, Zhou Y, Peng H-W, Liu Z-L, Huang S-H (2016) Is urgent decompression superior to delayed surgery for traumatic spinal cord injury? A meta-analysis. World Neurosurg 87:124–131

    Article  PubMed  Google Scholar 

  58. Mahmood NS, Kadavigere R, Avinash KR, Rao VR (2008) Magnetic resonance imaging in acute cervical spinal cord injury: a correlative study on spinal cord changes and 1 month motor recovery. Spinal Cord 46(12):791–797

    Article  CAS  PubMed  Google Scholar 

  59. Mattiassich G, Gollwitzer M, Gaderer F et al (2017) Functional outcomes in individuals undergoing very early (< 5 h) and early (5–24 h) surgical decompression in traumatic cervical spinal cord injury: analysis of neurological improvement from the Austrian Spinal Cord Injury Study. J Neurotrauma 34(24):3362–3371

    Article  PubMed  Google Scholar 

  60. van Middendorp JJ, Hosman AJF, Doi SAR (2013) The effects of the timing of spinal surgery after traumatic spinal cord injury: a systematic review and meta-analysis. J Neurotrauma 30(21):1781–1794

    Article  PubMed  Google Scholar 

  61. Mihai G, Nout YS, Tovar CA, Miller BA, Schmalbrock P, Bresnahan JC, Beattie MS (2008) Longitudinal comparison of two severities of unilateral cervical spinal cord injury using magnetic resonance imaging in rats. J Neurotrauma 25(1):1–18

    Article  PubMed  Google Scholar 

  62. Nout YS, Mihai G, Tovar CA, Schmalbrock P, Bresnahan JC, Beattie MS (2009) Hypertonic saline attenuates cord swelling and edema in experimental spinal cord injury: a study utilizing magnetic resonance imaging. Crit Care Med 37(7):2160–2166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Papadopoulos SM, Selden NR, Quint DJ, Patel N, Gillespie B, Grube S (2002) Immediate spinal cord decompression for cervical spinal cord injury: feasibility and outcome. J Trauma 52(2):323–332

    PubMed  Google Scholar 

  64. Phang I, Werndle MC, Saadoun S, Varsos G, Czosnyka M, Zoumprouli A, Papadopoulos MC (2015) Expansion duroplasty improves intraspinal pressure, spinal cord perfusion pressure, and vascular pressure reactivity index in patients with traumatic spinal cord injury: injured spinal cord pressure evaluation study. J Neurotrauma 32(12):865–874

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ramakonar H, Fehlings MG (2021) “Time is Spine”: new evidence supports decompression within 24 h for acute spinal cord injury. Spinal Cord 59(8):933–934

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ransom SC, Brown NJ, Pennington ZA, Lakomkin N, Mikula AL, Bydon M, Elder BD (2022) Hypothermia therapy for traumatic spinal cord injury: an updated review. J Clin Med Res. https://doi.org/10.3390/jcm11061585

    Article  Google Scholar 

  67. Rowland JW, Hawryluk GWJ, Kwon B, Fehlings MG (2008) Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 25(5):E2

    Article  PubMed  Google Scholar 

  68. Ryken TC, Hurlbert RJ, Hadley MN, Aarabi B, Dhall SS, Gelb DE, Rozzelle CJ, Theodore N, Walters BC (2013) The acute cardiopulmonary management of patients with cervical spinal cord injuries. Neurosurgery 72(Suppl 2):84–92

    Article  PubMed  Google Scholar 

  69. Saadoun S, Papadopoulos MC (2021) Acute, severe traumatic spinal cord injury: monitoring from the injury site and expansion duraplasty. Neurosurg Clin N Am 32(3):365–376

    Article  PubMed  Google Scholar 

  70. Sarkar A, Kim KT, Tsymbalyuk O, Keledjian K, Wilhelmy BE, Sherani NA, Jia X, Gerzanich V, Simard JM (2022) A direct comparison of physical versus dihydrocapsaicin-induced hypothermia in a rat model of traumatic spinal cord injury. Ther Hypothermia Temp Manag 12(2):90–102

    Article  PubMed  PubMed Central  Google Scholar 

  71. Schneider RC, Cherry G, Pantek H (1954) The syndrome of acute central cervical spinal cord injury; with special reference to the mechanisms involved in hyperextension injuries of cervical spine. J Neurosurg 11(6):546–577

    Article  CAS  PubMed  Google Scholar 

  72. Schneider RC, Knighton R (1959) Chronic neurological sequelae of acute trauma to the spine and spinal cord. III. The syndrome of chronic injury to the cervical spinal cord in the region of the central canal. J Bone Joint Surg Am 41-A(5):905–919

  73. Schneider RC, Thompson JM, Bebin J (1958) The syndrome of acute central cervical spinal cord injury. J Neurol Neurosurg Psychiatry 21(3):216–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shin HK, Park JH, Roh SW, Jeon SR (2022) Meta-analysis on the effect of hypothermia in acute spinal cord injury. Neurospine 19(3):748–756

    Article  PubMed  PubMed Central  Google Scholar 

  75. Squair JW, Bélanger LM, Tsang A et al (2017) Spinal cord perfusion pressure predicts neurologic recovery in acute spinal cord injury. Neurology 89(16):1660–1667

    Article  PubMed  Google Scholar 

  76. Suresh PB, Dhatt SS, Kumar V, Salaria AK, Neradi D, Samra T, Jain K (2022) Application of modest hypothermia in patients with acute traumatic cervical spine injury: a pilot study. Spine Surg Relat Res 6(5):453–459

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75(1):15–26

    Article  CAS  PubMed  Google Scholar 

  78. Teles AR, Ramos MB, Righesso O, Falavigna A (2022) Surgical timing in traumatic spinal cord injury: current practice and obstacles to early surgery in Latin America. Spinal Cord 60(4):368–374

    Article  PubMed  Google Scholar 

  79. Ter Wengel PV, Feller RE, Stadhouder A, Verbaan D, Oner FC, Goslings JC, Vandertop WP (2018) Timing of surgery in traumatic spinal cord injury: a national, multidisciplinary survey. Eur Spine J 27(8):1831–1838

    Article  PubMed  Google Scholar 

  80. Thompson C, Feldman DE, Mac-Thiong J-M (2018) Surgical management of patients following traumatic spinal cord injury: identifying barriers to early surgery in a specialized spinal cord injury center. J Spinal Cord Med 41(2):142–148

    Article  PubMed  Google Scholar 

  81. Tow AM, Kong KH (1998) Central cord syndrome: functional outcome after rehabilitation. Spinal Cord 36(3):156–160

    Article  CAS  PubMed  Google Scholar 

  82. Umerani MS, Abbas A, Sharif S (2014) Clinical outcome in patients with early versus delayed decompression in cervical spine trauma. Asian Spine J 8(4):427–434

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wagner FC Jr, Dohrmann GJ, Bucy PC (1971) Histopathology of transitory traumatic paraplegia in the monkey. J Neurosurg 35(3):272–276

    Article  PubMed  Google Scholar 

  84. Walters BC, Hadley MN, John Hurlbert R, Aarabi B, Dhall SS, Gelb DE, Harrigan MR, Rozelle CJ, Ryken TC, Theodore N (2013) Guidelines for the management of acute cervical spine and spinal cord injuries. Neurosurgery 60(Supplement 1):82–91

    Article  PubMed  Google Scholar 

  85. Werndle MC, Saadoun S, Phang I et al (2014) Monitoring of spinal cord perfusion pressure in acute spinal cord injury: initial findings of the injured spinal cord pressure evaluation study. Crit Care Med 42(3):646–655

    Article  PubMed  Google Scholar 

  86. Wilson JR, Cronin S, Fehlings MG, Kwon BK, Badhiwala JH, Ginsberg HJ, Witiw C, Jaglal S (2020) Epidemiology and impact of spinal cord injury in the elderly: results of a fifteen-year population-based cohort study. J Neurotrauma 37(15):1740–1751

    Article  PubMed  Google Scholar 

  87. Wilson JR, Tetreault LA, Kwon BK et al (2017) Timing of decompression in patients with acute spinal cord injury: a systematic review. Global Spine J 7(3 Suppl):95S-115S

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wilson JR, Witiw CD, Badhiwala J, Kwon BK, Fehlings MG, Harrop JS (2020) Early surgery for traumatic spinal cord injury: where are we now? Global Spine J 10(1 Suppl):84S-91S

    Article  PubMed  PubMed Central  Google Scholar 

  89. Xue F, Zhan S-Z, Zhang D-Y, Jiang B-G (2021) Early versus delayed surgery for acute traumatic cervical/thoracic spinal cord injury in Beijing, China: the results of a prospective, multicenter nonrandomized controlled trial. Orthop Surg 13(8):2246–2254

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yousefifard M, Hashemi B, Forouzanfar MM, Khatamian Oskooi R, Madani Neishaboori A, Jalili Khoshnoud R (2022) Ultra-early spinal decompression surgery can improve neurological outcome of complete cervical spinal cord injury; a systematic review and meta-analysis. Arch Acad Emerg Med 10(1):e11

    PubMed  PubMed Central  Google Scholar 

  91. (2001) Contemporary management of spinal cord injury: from impact to rehabilitation,: Charles H. Tator, Edward C. Benzel, AANS Press, 2001, $95, 367 pages. Spine J 1(5):384–385

Download references

Acknowledgements

N. H. is supported by the Research Fund of the University of Basel for Excellent Junior Researchers. M. G. F. is supported by the Robert Campeau Family Foundation/Dr. C. H. Tator Chair in Brain and Spinal Cord Research at UHN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Fehlings.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ayesha Quddusi and Karlo M. Pedro have equal contributions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quddusi, A., Pedro, K.M., Alvi, M.A. et al. Early surgical intervention for acute spinal cord injury: time is spine. Acta Neurochir 165, 2665–2674 (2023). https://doi.org/10.1007/s00701-023-05698-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-023-05698-0

Keywords

Navigation