Skip to main content

Advertisement

Log in

Bumetanide lowers acute hydrocephalus in a rat model of subarachnoid hemorrhage

  • Original Article - CSF Circulation
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Subarachnoid hemorrhage (SAH) can lead to acute hydrocephalus (AH). AH pathophysiology is classically attributed to an obstruction of the arachnoid granulations by blood. Recent findings in rodents suggest that after intraventricular hemorrhage, AH is related to cerebrospinal fluid (CSF) hypersecretion by the choroid plexus (CP), as it can be reduced by intracerebroventricular (ICV) injection of bumetanide.

Objective

Here, we investigated if and how CSF hypersecretion and/or CSF outflow disorders contribute to post-SAH hydrocephalus.

Methods

Ninety-four Wistar rats were used. SAH was induced by the endovascular perforation technique. The presence of AH was confirmed by magnetic resonance imaging (MRI), and rats with AH were randomly assigned to 4 groups: control group, superior sagittal sinus (SSS) thrombosis to block CSF reabsorption, ICV injection of saline, and ICV injection of bumetanide to decrease CSF secretion. Clinical outcome was evaluated with a neuroscore. A second MRI was performed 24 h later to evaluate the ventricular volume.

Results

Fifty percent of rats that survived SAH induction had AH. Their ventricular volume correlated well to the functional outcome after 24 h (r = 0.803). In rats with AH, 24 h later, ventricular volume remained equally increased in the absence of any further procedure. Similarly, ICV injection of saline or SSS thrombosis had no impact on the ventricular volume. However, ICV injection of bumetanide reduced AH by 35.9% (p = 0.002).

Conclusion

In rodents, post-SAH hydrocephalus is may be due to hypersecretion of CSF by the CP, as it is limited by ICV injection of bumetanide. However, we cannot exclude other mechanisms involved in post-SAH acute hydrocephalus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AH:

Acute hydrocephalus

CP:

Choroid plexus

DCI:

Delayed cerebral ischemia

CSF:

Cerebrospinal fluid

EVD:

External ventricular drain

ICV:

Intracerebroventricular

IVH:

Intraventricular hemorrhage

PHH:

Post-hemorrhagic hydrocephalus

SAH:

Subarachnoid hemorrhage

SSS:

Superior sagittal sinus

References

  1. Akins PT, Guppy KH (2021) Does impaired glymphatic drainage cause glymphedema? A review tailored to neurocritical care and neurosurgery. Neurocrit Care. https://doi.org/10.1007/s12028-021-01224-1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Black PM (1986) Hydrocephalus and vasospasm after subarachnoid hemorrhage from ruptured intracranial aneurysms. Neurosurgery 18(1):12–16

    Article  CAS  Google Scholar 

  3. Chen S, Luo J, Reis C, Manaenko A, Zhang J (2017) Hydrocephalus after subarachnoid hemorrhage: pathophysiology, diagnosis, and treatment. Biomed Res Int 2017:8584753

    PubMed  PubMed Central  Google Scholar 

  4. Connolly ES, Rabinstein AA, Carhuapoma JR et al (2012) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 43(6):1711–1737

    Article  Google Scholar 

  5. Delpire E, Gagnon KB (2019) Elusive role of the Na-K-2Cl cotransporter in the choroid plexus. Am J Physiol Cell Physiol 316(4):C522–C524

    Article  Google Scholar 

  6. Foerch C, Arai K, Jin G, Park K-P, Pallast S, van Leyen K, Lo EH (2008) Experimental model of warfarin-associated intracerebral hemorrhage. Stroke 39(12):3397–3404

    Article  CAS  Google Scholar 

  7. Gaberel T, Gakuba C, Goulay R, Martinez De Lizarrondo S, Hanouz J-L, Emery E, Touze E, Vivien D, Gauberti M (2014) Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke 45(10):3092–3096

    Article  CAS  Google Scholar 

  8. Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26(4):627–634 discussion 635

    Article  CAS  Google Scholar 

  9. Goulay R, Flament J, Gauberti M et al (2017) Subarachnoid hemorrhage severely impairs brain parenchymal cerebrospinal fluid circulation in nonhuman primate. Stroke 48(8):2301–2305

    Article  Google Scholar 

  10. Gregoriades JMC, Madaris A, Alvarez FJ, Alvarez-Leefmans FJ (2019) Genetic and pharmacological inactivation of apical Na+-K+-2Cl- cotransporter 1 in choroid plexus epithelial cells reveals the physiological function of the cotransporter. Am J Physiol Cell Physiol 316(4):C525–C544

    Article  Google Scholar 

  11. Guo D, Wilkinson DA, Thompson BG, Pandey AS, Keep RF, Xi G, Hua Y (2017) MRI characterization in the acute phase of experimental subarachnoid hemorrhage. Transl Stroke Res 8(3):234–243

    Article  CAS  Google Scholar 

  12. Hasan D, Vermeulen M, Wijdicks EF, Hijdra A, van Gijn J (1989) Management problems in acute hydrocephalus after subarachnoid hemorrhage. Stroke 20(6):747–753

    Article  CAS  Google Scholar 

  13. Karimy JK, Zhang J, Kurland DB et al (2017) Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med 23(8):997–1003

    Article  CAS  Google Scholar 

  14. Liu E, Peng X, Ma H, Zhang Y, Yang X, Zhang Y, Sun L, Yan J (2021) The involvement of aquaporin-4 in the interstitial fluid drainage impairment following subarachnoid hemorrhage. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2020.611494

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lozier AP, Sciacca RR, Romagnoli MF, Connolly ES (2002) Ventriculostomy-related infections: a critical review of the literature. Neurosurgery 51(1):170–181 discussion 181-182

    Article  Google Scholar 

  16. Okubo S, Strahle J, Keep RF, Hua Y, Xi G (2013) Subarachnoid hemorrhage-induced hydrocephalus in rats. Stroke 44(2):547–550

    Article  Google Scholar 

  17. Plog BA, Nedergaard M (2018) The glymphatic system in central nervous system health and disease: past, present, and future. Annu Rev Pathol 13:379–394

    Article  CAS  Google Scholar 

  18. Röttger C, Bachmann G, Gerriets T, Kaps M, Kuchelmeister K, Schachenmayr W, Walberer M, Wessels T, Stolz E (2005) A new model of reversible sinus sagittalis superior thrombosis in the rat: magnetic resonance imaging changes. Neurosurgery 57(3):573–580 discussion 573–580

    Article  Google Scholar 

  19. Shishido H, Zhang H, Okubo S, Hua Y, Keep RF, Xi G (2016) The effect of gender on acute hydrocephalus after experimental subarachnoid hemorrhage. Acta Neurochir Suppl 121:335–339

    Article  Google Scholar 

  20. Sokołowski W, Barszcz K, Kupczyńska M, Czubaj N, Skibniewski M, Purzyc H (2018) Lymphatic drainage of cerebrospinal fluid in mammals - are arachnoid granulations the main route of cerebrospinal fluid outflow? Biologia (Bratisl) 73(6):563–568

    Article  Google Scholar 

  21. Steffensen AB, Oernbo EK, Stoica A, Gerkau NJ, Barbuskaite D, Tritsaris K, Rose CR, MacAulay N (2018) Cotransporter-mediated water transport underlying cerebrospinal fluid formation. Nat Commun 9(1):2167

    Article  Google Scholar 

  22. van Asch CJJ, van der Schaaf IC, Rinkel GJE (2010) Acute hydrocephalus and cerebral perfusion after aneurysmal subarachnoid hemorrhage. AJNR Am J Neuroradiol 31(1):67–70

    Article  Google Scholar 

  23. Wan Y, Hua Y, Garton HJL, Novakovic N, Keep RF, Xi G (2019) Activation of epiplexus macrophages in hydrocephalus caused by subarachnoid hemorrhage and thrombin. CNS Neurosci Ther 25(10):1134–1141

    Article  CAS  Google Scholar 

  24. Wan S, Wei J, Hua Y, Koduri S, Keep RF, Xi G, Pandey AS (2020) Cerebrospinal fluid from aneurysmal subarachnoid hemorrhage patients leads to hydrocephalus in nude mice. Neurocrit Care. https://doi.org/10.1007/s12028-020-01031-0

    Article  Google Scholar 

  25. Zuurbier SM, van den Berg R, Troost D, Majoie CB, Stam J, Coutinho JM (2015) Hydrocephalus in cerebral venous thrombosis. J Neurol 262(4):931–937

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Metayer.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on CSF Circulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metayer, T., Orset, C., Ali, C. et al. Bumetanide lowers acute hydrocephalus in a rat model of subarachnoid hemorrhage. Acta Neurochir 164, 499–505 (2022). https://doi.org/10.1007/s00701-021-05088-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-021-05088-4

Keywords

Navigation