Skip to main content

Advertisement

Log in

The evolving utility of diffusion tensor tractography in the surgical management of temporal lobe epilepsy: a review

  • Review Article - Functional
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Diffusion tensor imaging (DTI) is a relatively new imaging modality that has found many peri-operative applications in neurosurgery.

Methods

A comprehensive survey of the applications of diffusion tensor imaging (DTI) in planning for temporal lobe epilepsy surgery was conducted. The presentation of this literature is supplemented by a case illustration.

Results

The authors have found that DTI is well utilized in epilepsy surgery, primarily in the tractography of Meyer’s loop. DTI has also been used to demonstrate extratemporal connections that may be responsible for surgical failure as well as perioperative planning. The tractographic anatomy of the temporal lobe is discussed and presented with original DTI pictures.

Conclusions

The uses of DTI in epilepsy surgery are varied and rapidly evolving. A discussion of the technology, its limitations, and its applications is well warranted and presented in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Borius PY, Roux FE, Valton L, Sol JC, Lotterie JA, Berry I (2014) Can DTI fiber tracking of the optic radiations predict visual deficit after surgery? Clin Neurol Neurosurg 122:87–91

    Article  PubMed  Google Scholar 

  2. Campbell JS, Pike GB (2014) Potential and limitations of diffusion MRI tractography for the study of language. Brain Lang 131:65–73

    Article  PubMed  Google Scholar 

  3. Chen X, Weigel D, Ganslandt O, Buchfelder M, Nimsky C (2009) Prediction of visual field deficits by diffusion tensor imaging in temporal lobe epilepsy surgery. Neuroimage 45:286–297

    Article  PubMed  Google Scholar 

  4. Choi C, Rubino PA, Fernandez-Miranda JC, Abe H, Rhoton AL, Jr. (2006) Meyer’s loop and the optic radiations in the transsylvian approach to the mediobasal temporal lobe. Neurosurgery 59:ONS228-235; discussion ONS235-226

  5. Colnat-Coulbois S, Mok K, Klein D, Penicaud S, Tanriverdi T, Olivier A (2010) Tractography of the amygdala and hippocampus: anatomical study and application to selective amygdalohippocampectomy. J Neurosurg 113:1135–1143

    Article  PubMed  Google Scholar 

  6. Cui Z, Ling Z, Pan L, Song H, Chen X, Shi W, Liu Z, Wang Q, Zhang Z, Li Y, Wang X, Qing Y, Xu X, Mao Z, Xu B, Yu X, Luan G (2015) Optic radiation mapping reduces the risk of visual field deficits in anterior temporal lobe resection. Int J Clin Exp Med 8:14283–14295

    PubMed  PubMed Central  Google Scholar 

  7. Daga P, Winston G, Modat M, White M, Mancini L, Cardoso MJ, Symms M, Stretton J, McEvoy AW, Thornton J, Micallef C, Yousry T, Hawkes DJ, Duncan JS, Ourselin S (2012) Accurate localization of optic radiation during neurosurgery in an interventional MRI suite. IEEE Trans Med Imaging 31:882–891

    Article  PubMed  Google Scholar 

  8. Douek P, Turner R, Pekar J, Patronas N, Le Bihan D (1991) MR color mapping of myelin fiber orientation. J Comput Assist Tomogr 15:923–929

    Article  CAS  PubMed  Google Scholar 

  9. Gleissner U, Helmstaedter C, Schramm J, Elger CE (2004) Memory outcome after selective amygdalohippocampectomy in patients with temporal lobe epilepsy: one-year follow-up. Epilepsia 45:960–962

    Article  PubMed  Google Scholar 

  10. Guye M, Regis J, Tamura M, Wendling F, McGonigal A, Chauvel P, Bartolomei F (2006) The role of corticothalamic coupling in human temporal lobe epilepsy. Brain 129:1917–1928

    Article  PubMed  Google Scholar 

  11. Hagmann P (2005) From diffusion MRI to brain connectomics. Université de Lausanne

  12. Hofer S, Karaus A, Frahm J (2010) Reconstruction and dissection of the entire human visual pathway using diffusion tensor MRI. Front Neuroanat 4:15

    PubMed  PubMed Central  Google Scholar 

  13. Irfanoglu MO, Walker L, Sarlls J, Marenco S, Pierpaoli C (2012) Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results. Neuroimage 61:275–288

    Article  PubMed  Google Scholar 

  14. James JS, Radhakrishnan A, Thomas B, Madhusoodanan M, Kesavadas C, Abraham M, Menon R, Rathore C, Vilanilam G (2015) Diffusion tensor imaging tractography of Meyer’s loop in planning resective surgery for drug-resistant temporal lobe epilepsy. Epilepsy Res 110:95–104

    Article  PubMed  Google Scholar 

  15. Jezzard P, Balaban RS (1995) Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med 34:65–73

    Article  CAS  PubMed  Google Scholar 

  16. Jolesz FA (2011) Intraoperative imaging in neurosurgery: where will the future take us? Acta Neurochir Suppl 109:21–25

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kamiya K, Amemiya S, Suzuki Y, Kunii N, Kawai K, Mori H, Kunimatsu A, Saito N, Aoki S, Ohtomo K (2016) Machine learning of DTI structural brain connectomes for lateralization of temporal lobe epilepsy. Magn Reson Med Sci 15:121–129

    Article  PubMed  Google Scholar 

  18. Kammen A, Law M, Tjan BS, Toga AW, Shi Y (2016) Automated retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis. Neuroimage 125:767–779

    Article  PubMed  Google Scholar 

  19. Kang N, Zhang J, Carlson ES, Gembris D (2005) White matter fiber tractography via anisotropic diffusion simulation in the human brain. IEEE Trans Med Imaging 24:1127–1137

    Article  PubMed  Google Scholar 

  20. Keller SS, Richardson MP, Schoene-Bake JC, O’Muircheartaigh J, Elkommos S, Kreilkamp B, Goh YY, Marson AG, Elger C, Weber B (2015) Thalamotemporal alteration and postoperative seizures in temporal lobe epilepsy. Ann Neurol 77:760–774

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kiernan JA (2012) Anatomy of the temporal lobe. Epilepsy Res Treat 2012:176157

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Klingler J (1956) Atlas cerebri humani. Karger, Basel

    Google Scholar 

  23. Lee SH, Kim M, Park H (2015) Planning for selective amygdalohippocampectomy involving less neuronal fiber damage based on brain connectivity using tractography. Neural Regen Res 10:1107–1112

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lilja Y, Ljungberg M, Starck G, Malmgren K, Rydenhag B, Nilsson DT (2014) Visualizing Meyer’s loop: a comparison of deterministic and probabilistic tractography. Epilepsy Res 108:481–490

    Article  PubMed  Google Scholar 

  25. Lilja Y, Nilsson DT (2015) Strengths and limitations of tractography methods to identify the optic radiation for epilepsy surgery. Quant Imaging Med Surg 5:288–299

    PubMed  PubMed Central  Google Scholar 

  26. Lutz MT, Clusmann H, Elger CE, Schramm J, Helmstaedter C (2004) Neuropsychological outcome after selective amygdalohippocampectomy with transsylvian versus transcortical approach: a randomized prospective clinical trial of surgery for temporal lobe epilepsy. Epilepsia 45:809–816

    Article  PubMed  Google Scholar 

  27. McDonald CR, Hagler DJ Jr, Girard HM, Pung C, Ahmadi ME, Holland D, Patel RH, Barba D, Tecoma ES, Iragui VJ, Halgren E, Dale AM (2010) Changes in fiber tract integrity and visual fields after anterior temporal lobectomy. Neurology 75:1631–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meola A, Comert A, Yeh FC, Sivakanthan S, Fernandez-Miranda JC (2016) The nondecussating pathway of the dentatorubrothalamic tract in humans: human connectome-based tractographic study and microdissection validation. J Neurosurg 124:1406–1412

    Article  PubMed  Google Scholar 

  29. Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269

    Article  CAS  PubMed  Google Scholar 

  30. Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15:468–480

    Article  PubMed  Google Scholar 

  31. Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari HS, Wendland MF, Tsuruda J, Norman D (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176:439–445

    Article  CAS  PubMed  Google Scholar 

  32. Munsell BC, Wee CY, Keller SS, Weber B, Elger C, da Silva LA, Nesland T, Styner M, Shen D, Bonilha L (2015) Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data. Neuroimage 118:219–230

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nakada T, Matsuzawa H (1995) Three-dimensional anisotropy contrast magnetic resonance imaging of the rat nervous system: MR axonography. Neurosci Res 22:389–398

    Article  CAS  PubMed  Google Scholar 

  34. Nguyen D, Vargas MI, Khaw N, Seeck M, Delavelle J, Lovblad KO, Haller S (2011) Diffusion tensor imaging analysis with tract-based spatial statistics of the white matter abnormalities after epilepsy surgery. Epilepsy Res 94:189–197

    Article  CAS  PubMed  Google Scholar 

  35. Nilsson D, Starck G, Ljungberg M, Ribbelin S, Jonsson L, Malmgren K, Rydenhag B (2007) Intersubject variability in the anterior extent of the optic radiation assessed by tractography. Epilepsy Res 77:11–16

    Article  PubMed  Google Scholar 

  36. Peltier J, Verclytte S, Delmaire C, Pruvo JP, Godefroy O, Le Gars D (2010) Microsurgical anatomy of the temporal stem: clinical relevance and correlations with diffusion tensor imaging fiber tracking. J Neurosurg 112:1033–1038

    Article  PubMed  Google Scholar 

  37. Piper RJ, Yoong MM, Kandasamy J, Chin RF (2014) Application of diffusion tensor imaging and tractography of the optic radiation in anterior temporal lobe resection for epilepsy: a systematic review. Clin Neurol Neurosurg 124:59–65

    Article  PubMed  Google Scholar 

  38. Powell HW, Parker GJ, Alexander DC, Symms MR, Boulby PA, Wheeler-Kingshott CA, Barker GJ, Koepp MJ, Duncan JS (2005) MR tractography predicts visual field defects following temporal lobe resection. Neurology 65:596–599

    Article  CAS  PubMed  Google Scholar 

  39. Pustina D, Avants B, Sperling M, Gorniak R, He X, Doucet G, Barnett P, Mintzer S, Sharan A, Tracy J (2015) Predicting the laterality of temporal lobe epilepsy from PET, MRI, and DTI: a multimodal study. Neuroimage Clin 9:20–31

    Article  PubMed  PubMed Central  Google Scholar 

  40. Robson MD, Gore JC, Constable RT (1997) Measurement of the point spread function in MRI using constant time imaging. Magn Reson Med 38:733–740

    Article  CAS  PubMed  Google Scholar 

  41. Roper SN, Rhoton AL Jr (1993) Surgical anatomy of the temporal lobe. Neurosurg Clin N Am 4:223–231

    CAS  PubMed  Google Scholar 

  42. Schmitt FC, Kaufmann J, Hoffmann MB, Tempelmann C, Kluge C, Rampp S, Voges J, Heinze HJ, Buentjen L, Grueschow M (2014) Case report: practicability of functionally based tractography of the optic radiation during presurgical epilepsy work up. Neurosci Lett 568:56–61

    Article  CAS  PubMed  Google Scholar 

  43. Sherbondy AJ, Dougherty RF, Napel S, Wandell BA (2008) Identifying the human optic radiation using diffusion imaging and fiber tractography. J Vis 8(12):11

    Article  Google Scholar 

  44. Shi Y, Kammen A, Law M (2014) Technological advances in neuroimaging: neurosurgical applications for the future. World Neurosurg 82:32–34

    Article  PubMed  Google Scholar 

  45. Sincoff EH, Tan Y, Abdulrauf SI (2004) White matter fiber dissection of the optic radiations of the temporal lobe and implications for surgical approaches to the temporal horn. J Neurosurg 101:739–746

    Article  PubMed  Google Scholar 

  46. Sindou M, Guenot M (2003) Surgical anatomy of the temporal lobe for epilepsy surgery. Adv Tech Stand Neurosurg 28:315–343

    CAS  PubMed  Google Scholar 

  47. Taoka T, Sakamoto M, Iwasaki S, Nakagawa H, Fukusumi A, Hirohashi S, Taoka K, Kichikawa K, Hoshida T, Sakaki T (2005) Diffusion tensor imaging in cases with visual field defect after anterior temporal lobectomy. AJNR Am J Neuroradiol 26:797–803

    PubMed  Google Scholar 

  48. Taoka T, Sakamoto M, Nakagawa H, Nakase H, Iwasaki S, Takayama K, Taoka K, Hoshida T, Sakaki T, Kichikawa K (2008) Diffusion tensor tractography of the Meyer loop in cases of temporal lobe resection for temporal lobe epilepsy: correlation between postsurgical visual field defect and anterior limit of Meyer loop on tractography. AJNR Am J Neuroradiol 29:1329–1334

    Article  CAS  PubMed  Google Scholar 

  49. Thudium MO, Campos AR, Urbach H, Clusmann H (2010) The basal temporal approach for mesial temporal surgery: sparing the Meyer loop with navigated diffusion tensor tractography. Neurosurgery 67:385–390

    PubMed  Google Scholar 

  50. Ture U, Yasargil MG, Friedman AH, Al-Mefty O (2000) Fiber dissection technique: lateral aspect of the brain. Neurosurgery 47:417–426, discussion 426–417

    Article  CAS  PubMed  Google Scholar 

  51. Wan X, Gullberg GT, Parker DL, Zeng GL (1997) Reduction of geometric and intensity distortions in echo-planar imaging using a multireference scan. Magn Reson Med 37:932–942

    Article  CAS  PubMed  Google Scholar 

  52. Wang YX, Zhu XL, Deng M, Siu DY, Leung JC, Chan Q, Chan DT, Mak CH, Poon WS (2010) The use of diffusion tensor tractography to measure the distance between the anterior tip of the Meyer loop and the temporal pole in a cohort from southern China. J Neurosurg 113:1144–1151

    Article  PubMed  Google Scholar 

  53. Wen HT, Rhoton AL Jr, de Oliveira E, Cardoso AC, Tedeschi H, Baccanelli M, Marino R Jr (1999) Microsurgical anatomy of the temporal lobe: part 1: mesial temporal lobe anatomy and its vascular relationships as applied to amygdalohippocampectomy. Neurosurgery 45:549–591, discussion 591–542

    Article  CAS  PubMed  Google Scholar 

  54. Wieshmann UC, Symms MR, Clark CA, Lemieux L, Franconi F, Parker GJ, Barker GJ, Shorvon SD (1999) Wallerian degeneration in the optic radiation after temporal lobectomy demonstrated in vivo with diffusion tensor imaging. Epilepsia 40:1155–1158

    Article  CAS  PubMed  Google Scholar 

  55. Winston GP, Daga P, Stretton J, Modat M, Symms MR, McEvoy AW, Ourselin S, Duncan JS (2012) Optic radiation tractography and vision in anterior temporal lobe resection. Ann Neurol 71:334–341

    Article  PubMed  PubMed Central  Google Scholar 

  56. Winston GP, Yogarajah M, Symms MR, McEvoy AW, Micallef C, Duncan JS (2011) Diffusion tensor imaging tractography to visualize the relationship of the optic radiation to epileptogenic lesions prior to neurosurgery. Epilepsia 52:1430–1438

    Article  PubMed  PubMed Central  Google Scholar 

  57. Xue R, van Zijl PC, Crain BJ, Solaiyappan M, Mori S (1999) In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn Reson Med 42:1123–1127

    Article  CAS  PubMed  Google Scholar 

  58. Yogarajah M, Focke NK, Bonelli S, Cercignani M, Acheson J, Parker GJ, Alexander DC, McEvoy AW, Symms MR, Koepp MJ, Duncan JS (2009) Defining Meyer’s loop-temporal lobe resections, visual field deficits and diffusion tensor tractography. Brain 132:1656–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sananthan Sivakanthan.

Ethics declarations

Funding

No funding was received for this research.

Conflicts of interest

Author Mr. Elliot Neal is an employee of Brainlab Inc. The other authors have nothing to disclose.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Comments

Surgery for temporal lobe epilepsy is often promising for seizure control. However, a variety of different neurological and neuropsychological side effects have to be considered sequences of surgery within the temporal lobe. Most of these unwanted side effects are either definitely or potentially triggered by injury to white-matter tracts, more than by cortical damage. This holds true for visual field defects, but probably also for short-term memory and speech problems or psychiatric sequels. Thus, better and individual control of white-matter tracts and the transfer of this knowledge to surgical strategies are important. One has to be aware that fiber tracking with diffusion tensor imaging is not equal to visualization of nerve fibers, per se. However, fiber tracking may provide important preoperative hints for surgical planning. We have tried to reduce the rate of postoperative visual field defects by a strictly basal approach for hippocampal resection, based on findings from DTI - tractography. Further positive effects have been inconsistently suggested. Application of DTI may support the notion of white-matter changes and their avoidance in temporal lobe surgery. Thus, this review provides an overview of what has been reached so far with temporal tractography, and warrants more experience with its future application and related benefits for patients.

Hans Clusmann

Aachen, Germany

Electronic supplementary material

Below is the link to the electronic supplementary material.

Three dimensional tractography anatomy of the temporal lobe. Supplemental video is original. (MP4 30290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakanthan, S., Neal, E., Murtagh, R. et al. The evolving utility of diffusion tensor tractography in the surgical management of temporal lobe epilepsy: a review. Acta Neurochir 158, 2185–2193 (2016). https://doi.org/10.1007/s00701-016-2910-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-016-2910-5

Keywords

Navigation