Skip to main content
Log in

Analysis of cerebrospinal fluid flow dynamics and morphology in Chiari I malformation with cine phase-contrast magnetic resonance imaging

  • Clinical Article - Neurosurgical Techniques
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

To determine cerebrospinal fluid (CSF) dynamics and morphology in Chiari I malformation (CMI) and assess the response to surgery of the posterior cranial fossa, we examined midsagittal imaging along with anterior cervical 2-3 (AC2-3), posterior cervical 2-3 (PC2-3), and aqueduct CSF flow hydrodynamics in axial imaging by using cine phase-contrast magnetic resonance imaging (PCMR).

Method

We examined 52 patients with CMI, both with and without syringomyelia (SM), pre-/post-surgery, and compared them to 17 healthy volunteers. Statistical analyses included paired t-tests, independent-samples t-tests, binary logistic regression, and crosstab with MedCalc software.

Results

Patients with CMI had significantly shorter clivus length and larger tentorial angle than the healthy controls (P = 0.004, P = 0.019, respectively). The AC2-3 cranial/caudal peak velocity (PV), PC2-3 cranial/caudal PV and aqueduct cranial peak PV of patients with CMI were significantly lower than healthy volunteers pre-surgery (P = 0.034 AC2-3 cranial PV, P = 0.000002 AC2-3 caudal PV; P = 0.046 PC2-3 cranial PV, P = 0.015 PC2-3 caudal PV; P = 0.022 aqueduct cranial PV) and increased after surgery (P = 0.024 AC2-3 cranial PV, P = 0.002 AC2-3 caudal PV; P = 0.001 PC2-3 cranial PV, P = 0.032 PC2-3 caudal PV; P = 0.003 aqueduct cranial PV). The aqueduct caudal PV of patients with CMI was higher than that of healthy controls (P = 0.004) and decreased post-surgery (P = 0.012). Patients with pre-surgery PC2-3 cranial PV >2.63 cm/s and aqueduct cranial PV >2.13 cm/s, respectively, experienced primary symptom improvement after surgery.

Conclusions

The innate bony dysontogenesis in patients with CMI contributes to tonsilar ectopia and exacerbates CSF flow obstruction. A pressure gradient that existed between SM and SAS supports the perivascular space theory that is used to explain SM formation. Our findings demonstrate that PCMR maybe a useful tool for predicting patient prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barkovich AJ, Wippold FJ, Sherman JL, Citrin CM (1986) Significance of cerebellar tonsilar position on MR.Am. J Neuroradiol 7:795–799

    CAS  Google Scholar 

  2. Bhadelia RA, Wolpert SM (2000) CSF flow dynamics in Chiari I malformation. Am J Neuroradiol 21:1564

    CAS  PubMed  Google Scholar 

  3. Campisi R, Ciancio N, Bivona L, Di Maria A, Maria GD (2013) Type I Arnold-Chiari Malformation with Bronchiectasis, respiratory failure, and sleep disordered breathing: a case report. Multidiscip Respir Med 8:15

    Article  PubMed Central  PubMed  Google Scholar 

  4. Chang HS, Joko M, Matsuo N, Kim SD, Nakagawa H (2005) Subarachnoid pressure-dependent change in syrinx size in a patient with syringomyelia associated with adhesive arachnoiditis. Case report. J Neurosurg Spine 2:209–214

    Article  PubMed  Google Scholar 

  5. Chiari H (1987) Concerning alterations in the cerebellum resulting from cerebral hydrocephalus.1891. Pediatr Neurosci 13:3–8

    Article  CAS  PubMed  Google Scholar 

  6. Clarke EC, Stoodley MA, Bilston LE (2013) Changes in temporal flow characteristics of CSF in Chiari malformation Type I with and without syringomyelia: implications for theory of syrinx development. J Neurosurg. doi:10.3171/2013.2.JNS12759

    Google Scholar 

  7. Dolar MT, Haughton VM, Iskandar BJ, Quigley M (2004) Effect of craniocervical decompression on peak CSF velocities in symptomatic patients with Chiari I malformation. Am J Neuroradiol 25:142–145

    PubMed  Google Scholar 

  8. Furtado SV, Reddy K, Hegde AS (2009) Posterior fossa morphometry in symptomatic pediatric and adult Chiari I malformation. J Clin Neurosci 16:1449–1454

    Article  PubMed  Google Scholar 

  9. Haughton VM, Korosec FR, Medow JE, Dolar MT, Iskandar BJ (2003) Peak systolic and diastolic CSF velocity in the foramen magnum in adult patients with Chiari I malformations and in normal control participants. Am J Neuroradiol 24:169–176

    PubMed  Google Scholar 

  10. Heiss JD, Snyder K, Peterson MM, Patronas NJ, Butman JA, Smith RK, Devroom HL, Sansur CA, Eskioglu E, Kammerer WA, Oldfield EH (2012) Pathophysiology of primary spinal syringomyelia. J Neurosurg Spine 17:367–380

    Article  PubMed Central  PubMed  Google Scholar 

  11. Koç K, Anik Y, Anik I, Cabuk B, Ceylan S (2007) Chiari 1 malformation with syringomyelia: correlation of phase-contrast cine MR imaging and outcome. Turk Neurosurg 17:183–192

    PubMed  Google Scholar 

  12. Koehler (1991) Chiari’s description of cerebellar ectopy (1891). With a summary of Cleland’s and Arnold’s contributions and some early observations on neural-tube defects. J Neurosurg 75:823–826

    Article  CAS  PubMed  Google Scholar 

  13. Koyanagi I, Houkin K (2010) Pathogenesis of syringomyelia associated with Chiari type 1 malformation: review of evidences and proposal of a new hypothesis. Neurosurg Rev 33:271–284

    Article  PubMed  Google Scholar 

  14. Labuda R, Loth F, Slavin K (2011) National Institutes of Health Chiari Research Conference: state of the research and new directions. Neurol Res 33:227–231

    Article  PubMed  Google Scholar 

  15. Linge SO, Mardal KA, Haughton V, Helgeland A (2013) Simulating CSF flow dynamics in the normal and the Chiari I subarachnoid space during rest and exertion. Am J Neuroradiol 34:41–45

    Article  CAS  PubMed  Google Scholar 

  16. Liu B, Wang ZY, Xie JC, Han HB, Pei XL (2007) Cerebrospinal fluid dynamics in Chiari malformation associated with syringomyelia. Chin Med J 120:219–223

    PubMed  Google Scholar 

  17. Luciano M, Dombrowski S (2007) Hydrocephalus and the heart: interactions of the first and third circulations. Cleve Clin J Med 74(1):S128–S131

    Article  PubMed  Google Scholar 

  18. Marin-Padilla M, Marin-Padilla TM (1981) Morphogenesis of experimentally induced Arnold–Chiari malformation. J Neurol Sci 50:29–55

    Article  CAS  PubMed  Google Scholar 

  19. Mauer UM, Gottschalk A, Mueller C, Weselek L, Kunz U, Schulz C (2011) Standard and cardiac-gated phase-contrast magnetic resonance imaging in the clinical course of patients with Chiari malformation Type I. Neurosurg Focus 31:E5

    Article  PubMed  Google Scholar 

  20. McGirt MJ, Atiba A, Attenello FJ, Wasserman BA, Datoo G, Gathinji M, Carson B, Weingart JD, Jallo GI (2008) Correlation of hindbrain CSF flow and outcome after surgical decompression for Chiari I malformation. Childs Nerv Syst 24:833–840

    Article  PubMed  Google Scholar 

  21. McGirt MJ, Nimjee SM, Floyd J, Bulsara KR, George TM (2005) Correlation of cerebrospinal fluid flow dynamics and headache in Chiari I malformation. Neurosurgery 56:716–721

    Article  PubMed  Google Scholar 

  22. McGirt MJ, Nimjee SM, Fuchs HE, George TM (2006) Relationship of cine phase-contrast magnetic resonance imaging with outcome after decompression for Chiari I malformations. Neurosurgery 59:140–146

    Article  PubMed  Google Scholar 

  23. Milhorat TH, Chou MW, Trinidad EM, Kula RW, Mandell M, Wolpert C, Speer MC (1999) Chiari I malformation redefined: clinical and radiographic findings for 364 symptomatic patients. Neurosurgery 44:1005–1017

    Article  CAS  PubMed  Google Scholar 

  24. Quigley MF, Iskandar B, Quigley ME, Nicosia M, Haughton V (2004) Cerebrospinal fluid flow in foramen magnum: temporal and spatial patterns at MR imaging in volunteers and in patients with Chiari I malformation. Radiology 232:229–236

    Article  PubMed  Google Scholar 

  25. Sakamoto H, Nishikawa M, Hakuba A, Yasui T, Kitano S, Nakanishi N, Inoue Y (1999) Expansive suboccipital cranioplasty for the treatment of syringomyelia associated with Chiari malformation. Acta Neurochir (Wien) 141:949–960

    Article  CAS  Google Scholar 

  26. Sakas DE, Korfias SI, Wayte SC, Beale DJ, Papapetrou KP, Stranjalis GS, Whittaker KW, Whitwell HL (2005) Chiari malformation: CSF flow dynamics in the craniocervical junction and syrinx. Acta Neurochir (Wien) 147:1223–1233

    Article  CAS  Google Scholar 

  27. Sekula RF Jr, Jannetta PJ, Casey KF, Marchan EM, Sekula LK, McCrady CS (2005) Dimensions of the posterior fossa in patients symptomatic for Chiari I malformation but without cerebellar tonsillar descent. Cerebrospinal Fluid Res 18;2:11

    Google Scholar 

  28. Shah S, Haughton V, del Río AM (2011) CSF flow through the upper cervical spinal canal in Chiari I malformation. Am J Neuroradiol 32:1149–1153

    Article  CAS  PubMed  Google Scholar 

  29. Stoodley MA, Jones NR, Brown CJ (1996) Evidence for rapid fluid flow from the subarachnoid space into the spinal cord central canal in the rat. Brain Res 707:155–164

    Article  CAS  PubMed  Google Scholar 

  30. Strayer A (2001) Chiari I malformation: clinical presentation and management. J Neurosci Nurs 33(90–96):104

    Google Scholar 

  31. Tubbs RS, McGirt MJ, Oakes WJ (2003) Surgical experience in 130 pediatric patients with Chiari I malformations. J Neurosurg 99:291–296

    Article  PubMed  Google Scholar 

  32. Ventureyra EC, Aziz HA, Vassilyadi M (2003) The role of cine flow MRI in children with Chiari I malformation. Childs Nerv Syst 19:109–113

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant SWH2013LC12 from the clinical innovation Foundation of Southwest hospital. The authors are grateful to the members of the neurosurgery and radiology departments of Southwest Hospital in Chongqing for permitting this study and for providing valuable advice.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-Kai Lin.

Additional information

Cheng-Shi Wang and Xing Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CS., Wang, X., Fu, CH. et al. Analysis of cerebrospinal fluid flow dynamics and morphology in Chiari I malformation with cine phase-contrast magnetic resonance imaging. Acta Neurochir 156, 707–713 (2014). https://doi.org/10.1007/s00701-013-1958-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-013-1958-8

Keywords

Navigation