Skip to main content

Advertisement

Log in

Somatotropic and thyroid hormones in the acute phase of subarachnoid haemorrhage

  • Clinical Article - Brain Injury
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Somatotropic and thyroid hormones are probably important for the recovery after acute brain injury. Still, the dynamics of these hormones after spontaneous subarachnoid haemorrhage (SAH) is not well described. The purpose of this study was to investigate the relation between somatotropic and thyroid hormones and clinical factors after SAH.

Methods

Twenty patients with spontaneous SAH were included prospectively. Serum concentrations of TSH, fT4, T3, IGF-1 and GH were measured once a day for 7 days after SAH. Hormone patterns and serum concentrations were compared to the severity of SAH, neurological condition at admission, clinical course and outcome of the patients.

Results

During the first week after SAH, all patients showed increased GH and IGF-1 concentrations. In the whole group, concentrations of TSH increased, whereas T3 and fT4 decreased. There were no relations of serum concentrations of IGF-1 or GH to clinical condition at admission, clinical course or outcome of the patients. Half of the patients showed low T3 serum concentrations. A complicated course was associated with a deeper fall in TSH and T3 concentrations. There were negative correlations for mean concentrations of TSH and T3 versus WFNS grade and a positive correlation for T3 versus GOS after 6 months, indicating that low concentrations of TSH and T3 were connected to worse SAH grade and poor outcome.

Conclusions

All patients showed increased GH and IGF-1 concentrations irrespective of the grade of SAH or clinical course. Patients with a complicated clinical course showed a more pronounced fall in TSH and T3 concentrations and low serum T3 concentrations were related to a more serious SAH and poor patient outcome. These results need to be studied further and they may contribute to the accumulated knowledge needed to understand the complex mechanisms influencing the unpredictable clinical course after SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aleman A, Torres-Aleman I (2009) Circulating insulin-like growth factor I and cognitive function: neuromodulation throughout the lifespan. Prog Neurobiol 89:256–265

    Article  PubMed  CAS  Google Scholar 

  2. Ambrosius W, Kazmierski R, Gupta V, Warot AW, Adamczewska-Kocialkowska D, Blazejewska A, Ziemnicka K, Nowinski WL (2011) Low free triiodothyronine levels are related to poor prognosis in acute ischemic stroke. Exp Clin Endocrinol Diabetes 119:139–143

    Article  PubMed  CAS  Google Scholar 

  3. Baxter RC, Hawker FH, To C, Stewart PM, Holman SR (1998) Thirty-day monitoring of insulin-like growth factors and their binding proteins in intensive care unit patients. Growth Hormon IGF Res 8:455–463

    Article  CAS  Google Scholar 

  4. Bendel S, Koivisto T, Ryynanen OP, Ruokonen E, Romppanen J, Kiviniemi V, Uusaro A (2010) Insulin like growth factor-I in acute subarachnoid hemorrhage: a prospective cohort study. Crit Care 14:R75

    Article  PubMed  Google Scholar 

  5. Bondanelli M, Ambrosio MR, Onofri A, Bergonzoni A, Lavezzi S, Zatelli MC, Valle D, Basaglia N, degli Uberti EC (2006) Predictive value of circulating insulin-like growth factor I levels in ischemic stroke outcome. J Clin Endocrinol Metab 91:3928–3934

    Article  PubMed  CAS  Google Scholar 

  6. Bondy CA, Cheng CM (2004) Signaling by insulin-like growth factor 1 in brain. Eur J Pharmacol 490:25–31

    Article  PubMed  CAS  Google Scholar 

  7. Chopra IJ, Huang TS, Beredo A, Solomon DH, Chua Teco GN, Mead JF (1985) Evidence for an inhibitor of extrathyroidal conversion of thyroxine to 3,5,3′-triiodothyronine in sera of patients with nonthyroidal illnesses. J Clin Endocrinol Metab 60:666–672

    Article  PubMed  CAS  Google Scholar 

  8. de Groof F, Joosten KF, Janssen JA, de Kleijn ED, Hazelzet JA, Hop WC, Uitterlinden P, van Doorn J, Hokken-Koelega AC (2002) Acute stress response in children with meningococcal sepsis: important differences in the growth hormone/insulin-like growth factor I axis between nonsurvivors and survivors. J Clin Endocrinol Metab 87:3118–3124

    Article  PubMed  Google Scholar 

  9. De Groot LJ (1999) Dangerous dogmas in medicine: the nonthyroidal illness syndrome. J Clin Endocrinol Metab 84:151–164

    Article  PubMed  Google Scholar 

  10. Denti L, Annoni V, Cattadori E, Salvagnini MA, Visioli S, Merli MF, Corradi F, Ceresini G, Valenti G, Hoffman AR, Ceda GP (2004) Insulin-like growth factor 1 as a predictor of ischemic stroke outcome in the elderly. Am J Med 117:312–317

    Article  PubMed  CAS  Google Scholar 

  11. Drake G (1988) Report of World Federation of Neurological Surgeons Committee on a universal subarachnoid hemorrhage grading scale. J Neurosurg 68:985–086

    Google Scholar 

  12. Elijah IE, Branski LK, Finnerty CC, Herndon DN (2011) The GH/IGF-1 system in critical illness. Best Pract Res Clin Endocrinol Metab 25:759–767

    Article  PubMed  CAS  Google Scholar 

  13. Fisher CM, Kistler JP, Davis JM (1980) Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery 6:1–9

    Article  PubMed  CAS  Google Scholar 

  14. Gehrmann J, Yao DL, Bonetti B, Bondy CA, Brenner M, Zhou J, Kreutzberg GW, Webster HD (1994) Expression of insulin-like growth factor-I and related peptides during motoneuron regeneration. Exp Neurol 128:202–210

    Article  PubMed  CAS  Google Scholar 

  15. Grote E, Hassler W (1988) The critical first minutes after subarachnoid hemorrhage. Neurosurgery 22:654–661

    Article  PubMed  CAS  Google Scholar 

  16. Harada N, Shimozawa N, Okajima K (2009) AT(1) receptor blockers increase insulin-like growth factor-I production by stimulating sensory neurons in spontaneously hypertensive rats. Transl Res 154:142–152

    Article  PubMed  CAS  Google Scholar 

  17. Harada N, Zhao J, Kurihara H, Nakagata N, Okajima K (2011) Desalted deep-sea water improves cognitive function in mice by increasing the production of insulin-like growth factor-I in the hippocampus. Transl Res 158:106–117

    Article  PubMed  CAS  Google Scholar 

  18. Hurcombe SD, Toribio RE, Slovis N, Kohn CW, Refsal K, Saville W, Mudge MC (2008) Blood arginine vasopressin, adrenocorticotropin hormone, and cortisol concentrations at admission in septic and critically ill foals and their association with survival. J Vet Intern Med 22:639–647

    Article  PubMed  CAS  Google Scholar 

  19. Jakubowski J (1995) Blood supply, blood flow and autoregulation in the adenohypophysis, and altered patterns in oestrogen-induced adenomatous hyperplasia. Br J Neurosurg 9:331–346

    Article  PubMed  CAS  Google Scholar 

  20. Jennett B, Bond M (1975) Assessment of outcome after severe brain damage. Lancet 1:480–484

    Article  PubMed  CAS  Google Scholar 

  21. Kaptein EM, Grieb DA, Spencer CA, Wheeler WS, Nicoloff JT (1981) Thyroxine metabolism in the low thyroxine state of critical nonthyroidal illnesses. J Clin Endocrinol Metab 53:764–771

    Article  PubMed  CAS  Google Scholar 

  22. Klose M, Brennum J, Poulsgaard L, Kosteljanetz M, Wagner A, Feldt-Rasmussen U (2010) Hypopituitarism is uncommon after aneurysmal subarachnoid haemorrhage. Clin Endocrinol (Oxf) 73:95–101

    Google Scholar 

  23. Komoly S, Hudson LD, Webster HD, Bondy CA (1992) Insulin-like growth factor I gene expression is induced in astrocytes during experimental demyelination. Proc Natl Acad Sci USA 89:1894–1898

    Article  PubMed  CAS  Google Scholar 

  24. Kooijman R, Sarre S, Michotte Y, De Keyser J (2009) Insulin-like growth factor I: a potential neuroprotective compound for the treatment of acute ischemic stroke? Stroke 40:e83–e88

    Article  PubMed  Google Scholar 

  25. Landin-Wilhelmsen K, Lundberg PA, Lappas G, Wilhelmsen L (2004) Insulin-like growth factor I levels in healthy adults. Horm Res 62(Suppl 1):8–16

    Article  PubMed  CAS  Google Scholar 

  26. Lee WH, Clemens JA, Bondy CA (1992) Insulin-like growth factors in the response to cerebral ischemia. Mol Cell Neurosci 3:36–43

    Article  PubMed  CAS  Google Scholar 

  27. Li XS, Williams M, Bartlett WP (1998) Induction of IGF-1 mRNA expression following traumatic injury to the postnatal brain. Brain Res Mol Brain Res 57:92–96

    Article  PubMed  CAS  Google Scholar 

  28. Lim CF, Docter R, Visser TJ, Krenning EP, Bernard B, van Toor H, de Jong M, Hennemann G (1993) Inhibition of thyroxine transport into cultured rat hepatocytes by serum of nonuremic critically ill patients: effects of bilirubin and nonesterified fatty acids. J Clin Endocrinol Metab 76:1165–1172

    Article  PubMed  CAS  Google Scholar 

  29. Mebis L, van den Berghe G (2009) The hypothalamus-pituitary-thyroid axis in critical illness. Neth J Med 67:332–340

    PubMed  CAS  Google Scholar 

  30. Mebis L, Van den Berghe G (2011) Thyroid axis function and dysfunction in critical illness. Best Pract Res Clin Endocrinol Metab 25:745–757

    Article  PubMed  CAS  Google Scholar 

  31. Mesotten D, Wouters PJ, Peeters RP, Hardman KV, Holly JM, Baxter RC, Van den Berghe G (2004) Regulation of the somatotropic axis by intensive insulin therapy during protracted critical illness. J Clin Endocrinol Metab 89:3105–3113

    Article  PubMed  CAS  Google Scholar 

  32. Okajima K, Harada N (2008) Promotion of insulin-like growth factor-I production by sensory neuron stimulation; molecular mechanism(s) and therapeutic implications. Curr Med Chem 15:3095–3112

    Article  PubMed  CAS  Google Scholar 

  33. Parenti G, Cecchi PC, Ragghianti B, Schwarz A, Ammannati F, Mennonna P, Di Rita A, Gallina P, Di Lorenzo N, Innocenti P, Forti G, Peri A (2011) Evaluation of the anterior pituitary function in the acute phase after spontaneous subarachnoid hemorrhage. J Endocrinol Investig 34:361–365

    CAS  Google Scholar 

  34. Pritz MB, Giannotta SL, Kindt GW, McGillicuddy JE, Prager RL (1978) Treatment of patients with neurological deficits associated with cerebral vasospasm by intravascular volume expansion. Neurosurgery 3:364–368

    Article  PubMed  CAS  Google Scholar 

  35. Reinhardt RR, Bondy CA (1994) Insulin-like growth factors cross the blood–brain barrier. Endocrinology 135:1753–1761

    Article  PubMed  CAS  Google Scholar 

  36. Ross R, Miell J, Freeman E, Jones J, Matthews D, Preece M, Buchanan C (1991) Critically ill patients have high basal growth hormone levels with attenuated oscillatory activity associated with low levels of insulin-like growth factor-I. Clin Endocrinol (Oxf) 35:47–54

    Article  CAS  Google Scholar 

  37. Rothwell PM, Lawler PG (1995) Prediction of outcome in intensive care patients using endocrine parameters. Crit Care Med 23:78–83

    Article  PubMed  CAS  Google Scholar 

  38. Ryttlefors M, Howells T, Nilsson P, Ronne-Engstrom E, Enblad P (2007) Secondary insults in subarachnoid hemorrhage: occurrence and impact on outcome and clinical deterioration. Neurosurgery 61:704–714, discussion 714–705

    Article  PubMed  Google Scholar 

  39. Savaridas T, Andrews PJ, Harris B (2004) Cortisol dynamics following acute severe brain injury. Intensive Care Med 30:1479–1483

    Article  PubMed  Google Scholar 

  40. Tanriverdi F, Dagli AT, Karaca Z, Unluhizarci K, Selcuklu A, Casanueva FF, Kelestimur F (2007) High risk of pituitary dysfunction due to aneurysmal subarachnoid haemorrhage: a prospective investigation of anterior pituitary function in the acute phase and 12 months after the event. Clin Endocrinol (Oxf) 67:931–937

    Article  CAS  Google Scholar 

  41. Teasdale G, Jennett B (1974) Assessment of coma and impaired consciousness. A practical scale. Lancet 2:81–84

    Article  PubMed  CAS  Google Scholar 

  42. Tenedieva ND, Tenedieva VD, Eliava S, Krymskii VA, Shakhnovich AR, Amcheslavskii VG, Toma GI, Dausheva AA, Mikrikova LV, Voronov VG (2002) [Cerebral low T3 syndrome]. Zh Vopr Neirokhir Im N N Burdenko:16–21; discussion 21

  43. Van den Berghe G (2000) Novel insights into the neuroendocrinology of critical illness. Eur J Endocrinol 143:1–13

    Article  PubMed  Google Scholar 

  44. Van den Berghe G, de Zegher F, Bouillon R (1998) Clinical review 95: acute and prolonged critical illness as different neuroendocrine paradigms. J Clin Endocrinol Metab 83:1827–1834

    Article  PubMed  Google Scholar 

  45. van Rijn MJ, Slooter AJ, Bos MJ, Catarino CF, Koudstaal PJ, Hofman A, Breteler MM, van Duijn CM (2006) Insulin-like growth factor I promoter polymorphism, risk of stroke, and survival after stroke: the Rotterdam study. J Neurol Neurosurg Psychiatry 77:24–27

    Article  PubMed  Google Scholar 

  46. Vermes I, Beishuizen A (2001) The hypothalamic-pituitary-adrenal response to critical illness. Best Pract Res Clin Endocrinol Metab 15:495–511

    Article  PubMed  CAS  Google Scholar 

  47. Zetterling M, Hillered L, Enblad P, Karlsson T, Ronne-Engstrom E (2011) Relation between brain interstitial and systemic glucose concentrations after subarachnoid hemorrhage. J Neurosurg 115:66–74

    Article  PubMed  CAS  Google Scholar 

  48. Zhang Y, Meyer MA (2010) Clinical analysis on alteration of thyroid hormones in the serum of patients with acute ischemic stroke. Stroke Res Treat 2010.pii:290678. doi:10.4061/2010/290678

Download references

Acknowledgments

We would like to thank Tim Howells for correcting the language in the manuscript.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Zetterling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zetterling, M., Engström, B.E., Arnardottir, S. et al. Somatotropic and thyroid hormones in the acute phase of subarachnoid haemorrhage. Acta Neurochir 155, 2053–2062 (2013). https://doi.org/10.1007/s00701-013-1670-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-013-1670-8

Keywords

Navigation