Skip to main content

Advertisement

Log in

A synergistic bone sparing effect of curcumin and alendronate in ovariectomized rat

  • Experimental research
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

The purpose of this study was to evaluate the therapeutic effects of combination therapy with curcumin and alendronate on bone remodeling after ovariectomy in rats.

Methods

Eighty female Sprague-Dawley rats underwent either a sham operation (the sham group) or bilateral ovariectomy (OVX). The ovariectomized animals were randomly distributed amongst four groups: untreated OVX group, curcumin-administered group, alendronate-administered group, and the combination therapy group. At 8 and 12 weeks after surgery, rats from each of the groups were euthanized. Serum biochemical markers of bone turnover, including osteocalcin and alkaline phosphatase (ALP), and the telopeptide fragment of type I collagen C-terminus (CTX) were analyzed. Bone histomorphometric parameters of the 4th lumbar vertebrae were determined by micro-computed tomography (CT). In addition, mechanical strength was determined by a three-point bending test.

Results

Serum biochemical markers of bone turnover in the experiment groups (curcumin administered group, alendronate administered group, and the combination therapy group) were significantly lower than in the untreated OVX group (p < 0.05). The combination therapy group had lower ALP and CTX-1 concentrations at 12 weeks, which were statistically significant compared with the curcumin only and the alendronate only group (p < 0.05). The combination therapy group had a significant increase in BMD at 8 weeks and Cr.BMD at 12 weeks compared with the curcumin-only group (p = 0.005 and p = 0.013, respectively). The three point bending test showed that the 4th lumbar vertebrae of the combination therapy group had a significantly greater maximal load value compared to that of the curcumin only and the alendronate only group (p < 0.05).

Conclusions

The present study demonstrated that combination therapy with a high dose of curcumin and a standard dose of alendronate has therapeutic advantages over curcumin or alendronate monotherapy, in terms of the synergistic antiresorptive effect on bone remodeling, and improving bone mechanical strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

BMD:

Bone mineral density

BV/TV:

Trabecular bone volume fraction

CTX:

C-terminal telopeptide fragment of type I collagen C-terminus

micro-CT scan:

Micro-computed tomography scan

OVX:

Ovariectomy

Tb.Th.:

Trabecular thickness

Tb.N.:

Trabecular number

Tb.Sp.:

Trabecular separation

References

  1. Adachi JD, Loannidis G, Berger C, Joseph L, Papaioannou A, Pickard L, Papadimitropoulos EA, Hopman W, Poliquin S, Prior JC, Hanley DA, Olszynski WP, Anastssiades T, Brown JP, Murray T, Jackson SA, Tenenhouse A, Canadian Multicentre Osteoporosis Study (CaMos) Research Group (2001) The influence of osteoporotic fractures on health-related quality of life in community-dwelling men and women across Canada. Osteoporos Int 12(11):903–908

    Article  PubMed  CAS  Google Scholar 

  2. Bell NH (2003) RANK ligand and the regulation of skeletal remodeling. J Clin Invest 111(8):1120–1122

    PubMed  CAS  Google Scholar 

  3. Bharti AC, Takada Y, Aggarwal BB (2004) Curcumin (diferuloylmethane) inhibits receptor activator of NF-kB ligand-induced NF-kappa B activation in osteoclast precursors and suppresses osteoclastogenesis. J Immunol 172(10):5940–5947

    PubMed  CAS  Google Scholar 

  4. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22(3):465–475

    Article  PubMed  Google Scholar 

  5. Canpolat S, Tug N, Seyran AD, Kumru S, Yilmaz B (2010) Effects of raloxifene and estradiol on bone turnover parameters in intact and ovariectomized rats. J Physiol Biochem 66(1):23–28

    Article  PubMed  CAS  Google Scholar 

  6. Fleisch H (1998) Bisphosphonate: mechanisms of action. Endocr Rev 19:80–100

    Article  PubMed  CAS  Google Scholar 

  7. French DL, Muir JM, Webber CE (2008) The ovariectomized, mature rat model of postmenopausal osteoporosis: an assessment of the bone sparing effects of curcumin. Phytomedicine 15(12):1069–1078

    Article  PubMed  CAS  Google Scholar 

  8. Folwarczna J, Zych M, Trzeciak HI (2010) Effects of curcumin on the skeletal system in rats. Pharmacol Rep 62(5):900–909

    PubMed  CAS  Google Scholar 

  9. Joe B, Vijaykumar M, Lokesh BR (2004) Biological properties of curcumin-celluar and molecular mechanisms of action. Crit Rev Food Sci Nutr 44(2):97–111

    Article  PubMed  CAS  Google Scholar 

  10. Kashii M, Hashimoto J, Nakano T, Umakoshi Y, Yoshikawa H (2008) Alendronate treatment promotes bone formation with a less anisotropic microstructure during intramembranous ossification in rats. J Bone Miner Metab 26(1):24–33

    Article  PubMed  CAS  Google Scholar 

  11. Notoya M, Nishimura H, Woo JT, Nagai K, Ishihara Y, Hagiwara H (2006) Curcumin inhibits the proliferation and mineralization of cultured osteoblasts. Eur J Pharmacol 534(1–3):55–62

    Article  PubMed  CAS  Google Scholar 

  12. Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CY (2005) Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab 90(3):1294–1301

    Article  PubMed  CAS  Google Scholar 

  13. Oh S, Kyung TW, Choi HS (2008) Curcumin inhibits osteoclastogenesis by decreasing receptor activator of nuclear factor-kappaB ligand (RANKL) in bone marrow stromal cells. Mol Cells 26(5):486–489

    PubMed  CAS  Google Scholar 

  14. Ott SM (2005) Long-term safety of bisphosphonates. J Clin Endocrinol Metab 90(3):1897–1899

    Article  PubMed  CAS  Google Scholar 

  15. Ozaki K, Kawata Y, Amano S, Hanazawa S (2000) Stimulatory effect of curcumin on osteoclast apoptosis. Biochem Pharmacol 59(12):1577–1581

    Article  PubMed  CAS  Google Scholar 

  16. Park SB, Lee YJ, Chung CK (2010) Bone mineral density changes after ovariectomy in rats as an osteopenic model: stepwise description of double dorso-lateral approach. J Korean Neurosurg Soc 48(4):309–312

    Article  PubMed  Google Scholar 

  17. Park SK, Oh S, Shin HK, Kim SH, Ham J, Song JS, Lee S (2011) Synthesis of substitute triazolyl curcumin mimics that inhibit RANKL-induced osteoclastogenesis. Bioorg Med Chem Lett 21(12):3573–3577

    Article  PubMed  CAS  Google Scholar 

  18. Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 115(12):3318–3325

    Article  PubMed  CAS  Google Scholar 

  19. Sakai S, Endo K, Takeda S, Mihara M, Shiraishi A (2012) Combination therapy with eldecalcitol and alendronate has therapeutic advantages over monotherapy by improving bone strength. Bone 50(5):1054–1063

    Article  PubMed  CAS  Google Scholar 

  20. Salari P, Abdollahi M (2012) Long term bisphosphonate use in osteoporotic patients; a step forward, two steps back. J Pharm Pharm Sci 15(2):305–317

    PubMed  CAS  Google Scholar 

  21. Shishodia S, Sethi G, Aggarwal BB (2005) Curcumin: getting back to the roots. Ann N Y Acad Sci 1056:206–217

    Article  PubMed  CAS  Google Scholar 

  22. Szulc P, Meunier PJ (2003) Synergistic effect of vitamin D and calcium in preventing proximal femoral fractures in older patients. Joint Bone Spine 70(3):157–160

    Article  PubMed  Google Scholar 

  23. Watts NB, Diab DL (2010) Long-term use of bisphosphonates in osteoporosis. J Clin Endocrinol Metab 95(4):1555–1565

    Article  PubMed  CAS  Google Scholar 

  24. Whyte MP, Wenkert D, Clements KL, McAlister WH, Mumm S (2003) Bisphosphonate-induced osteoporosis. N Engl J Med 349:457–463

    Article  PubMed  CAS  Google Scholar 

  25. Yang KY, Lin LC, Tseng TY, Wang SC, Tsai TH (2007) Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 853:183–189

    Article  PubMed  CAS  Google Scholar 

  26. Yang MW, Wang TH, Yan PP, Chu LW, Yu J, Gao ZD, Li YZ, Guo BL (2011) Curcumin improves bone microarchitecture and enhances mineral density in APP/PS1 transgenic mice. Phytomedicine 18(2–3):205–213

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Biomedical Reserach Institute grant, Kyungpook National University Hospital (2011).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo-Kyung Sung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, DC., Kim, KT., Jeon, Y. et al. A synergistic bone sparing effect of curcumin and alendronate in ovariectomized rat. Acta Neurochir 154, 2215–2223 (2012). https://doi.org/10.1007/s00701-012-1516-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-012-1516-9

Keywords

Navigation