Skip to main content

Advertisement

Log in

The subthalamic nucleus at 7.0 Tesla: evaluation of sequence and orientation for deep-brain stimulation

  • Experimental research
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Deep-brain stimulation (DBS) of the subthalamic nucleus (STN) is an accepted neurosurgical technique for the treatment of medication-resistant Parkinson’s disease and other neurological disorders. The accurate targeting of the STN is facilitated by precise and reliable identification in pre-stereotactic magnetic resonance imaging (MRI).

The aim of the study was to compare and evaluate different promising MRI methods at 7.0 T for the pre-stereotactic visualisation of the STN

Methods

MRI (T2-turbo spin-echo [TSE], T1-gradient echo [GRE], fast low-angle shot [FLASH] two-dimensional [2D] T2* and susceptibility-weighted imaging [SWI]) was performed in nine healthy volunteers. Delineation and image quality for the STN were independently evaluated by two neuroradiologists using a six-point grading system. Inter-rater reliability, contrast-to-noise ratios (CNRs) and signal-to-noise ratios (SNRs) for the STN were calculated. For the anatomical validation, the coronal FLASH 2D T2* images were co-registered with a stereotactic atlas (Schaltenbrand-Wahren).

Results

The STN was clearly and reliably visualised in FLASH 2D T2* imaging (particularly coronal view), with a sharp delineation between the STN, the substantia nigra and the zona incerta. No major artefacts in the STN were observed in any of the sequences. FLASH 2D T2* and SWI images offered significantly higher CNR for the STN compared with T2-TSE. The co-registration of the coronal FLASH 2D T2* images with the stereotactic atlas affirmed the correct localisation of the STN in all cases.

Conclusion

The STN is best and reliably visualised in FLASH 2D T2* imaging (particularly coronal orientation) at 7.0-T MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Deep-Brain Stimulation for Parkinson’s Disease Study Group (2001) Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 345: 956–963

    Google Scholar 

  2. Kim HJ, Jeon BS, Paek SH, Lee JY, Kim CK, Kim DG (2010) Bilateral subthalamic deep brain stimulation in Parkinson disease patients with severe tremor. Neurosurgery 67:626–632, discussion 632

    Article  PubMed  Google Scholar 

  3. Rehncrona S, Johnels B, Widner H, Tornqvist AL, Hariz M, Sydow O (2003) Long-term efficacy of thalamic deep brain stimulation for tremor: double-blind assessments. Mov Disord 18:163–170

    Article  PubMed  Google Scholar 

  4. Tisch S, Rothwell JC, Limousin P, Hariz MI, Corcos DM (2007) The physiological effects of pallidal deep brain stimulation in dystonia. IEEE Trans Neural Syst Rehabil Eng 15:166–172

    Article  PubMed  Google Scholar 

  5. Krack P, Hariz MI, Baunez C, Guridi J, Obeso JA (2010) Deep brain stimulation: from neurology to psychiatry? Trends Neurosci 33:474–484

    Article  PubMed  CAS  Google Scholar 

  6. Sakas DE, Panourias IG, Singounas E, Simpson BA (2007) Neurosurgery for psychiatric disorders: from the excision of brain tissue to the chronic electrical stimulation of neural networks. Acta Neurochir Suppl 97:365–374

    Article  PubMed  CAS  Google Scholar 

  7. Kringelbach ML, Jenkinson N, Owen SL, Aziz TZ (2007) Translational principles of deep brain stimulation. Nat Rev Neurosci 8:623–635

    Article  PubMed  CAS  Google Scholar 

  8. Huang C, Mattis P, Tang C, Perrine K, Carbon M, Eidelberg D (2007) Metabolic brain networks associated with cognitive function in Parkinson’s disease. NeuroImage 34:714–723

    Article  PubMed  Google Scholar 

  9. Kim HJ, Jeon BS, Lee JY, Paek SH, Kim DG (2012) The benefit of subthalamic deep brain stimulation for pain in Parkinson disease: a 2-year follow-up study. Neurosurgery 70:18–23, discussion 23–14

    Article  PubMed  Google Scholar 

  10. Mure H, Hirano S, Tang CC, Isaias IU, Antonini A, Ma Y, Dhawan V, Eidelberg D (2011) Parkinson’s disease tremor-related metabolic network: characterization, progression, and treatment effects. NeuroImage 54:1244–1253

    Article  PubMed  Google Scholar 

  11. Trost M, Su S, Su P, Yen RF, Tseng HM, Barnes A, Ma Y, Eidelberg D (2006) Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease. Neuroimage 31:301–307

    Article  PubMed  Google Scholar 

  12. Voges J, Volkmann J, Allert N, Lehrke R, Koulousakis A, Freund HJ, Sturm V (2002) Bilateral high-frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: correlation of therapeutic effect with anatomical electrode position. J Neurosurg 96:269–279

    Article  PubMed  Google Scholar 

  13. Yelnik J (2002) Functional anatomy of the basal ganglia. Mov Disord 17(Suppl 3):S15–S21

    Article  PubMed  Google Scholar 

  14. Mallet L, Schupbach M, N’Diaye K, Remy P, Bardinet E, Czernecki V, Welter ML, Pelissolo A, Ruberg M, Agid Y, Yelnik J (2007) Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc Natl Acad Sci USA 104:10661–10666

    Article  PubMed  CAS  Google Scholar 

  15. Abosch A, Yacoub E, Ugurbil K, Harel N (2010) An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 tesla. Neurosurgery 67:1745–1756, discussion 1756

    Article  PubMed  Google Scholar 

  16. Carpenter M (1976) The subthalamic region. In: Carpenter M (ed) Human neuroanatomy. Wiliams & Wilkins, Baltimore, pp 509–511

    Google Scholar 

  17. Benabid AL, Krack PP, Benazzouz A, Limousin P, Koudsie A, Pollak P (2000) Deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: methodologic aspects and clinical criteria. Neurology 55:S40–S44

    PubMed  CAS  Google Scholar 

  18. Burdick AP, Foote KD, Wu S, Bowers D, Zeilman P, Jacobson CE, Ward HE, Okun MS (2011) Do patient’s get angrier following STN, GPi, and thalamic deep brain stimulation. NeuroImage 54(Suppl 1):S227–S232

    Article  PubMed  Google Scholar 

  19. Halpern C, Hurtig H, Jaggi J, Grossman M, Won M, Baltuch G (2007) Deep brain stimulation in neurologic disorders. Parkinsonism Relat Disord 13:1–16

    Article  PubMed  Google Scholar 

  20. Halpern CH, Danish SF, Baltuch GH, Jaggi JL (2008) Brain shift during deep brain stimulation surgery for Parkinson’s disease. Stereotact Funct Neurosurg 86:37–43

    Article  PubMed  Google Scholar 

  21. Temel Y, Wilbrink P, Duits A, Boon P, Tromp S, Ackermans L, van Kranen-Mastenbroek V, Weber W, Visser-Vandewalle V (2007) Single electrode and multiple electrode guided electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. Neurosurgery 61:346–355, discussion 355–347

    Article  PubMed  Google Scholar 

  22. Hariz MI, Bergenheim AT (1990) A comparative study on ventriculographic and computerized tomography-guided determinations of brain targets in functional stereotaxis. J Neurosurg 73:565–571

    Article  PubMed  CAS  Google Scholar 

  23. Holtzheimer PE 3rd, Roberts DW, Darcey TM (1999) Magnetic resonance imaging versus computed tomography for target localization in functional stereotactic neurosurgery. Neurosurgery 45:290–297, discussion 297–298

    Article  PubMed  Google Scholar 

  24. den Dunnen WF, Staal MJ (2005) Anatomical alterations of the subthalamic nucleus in relation to age: a postmortem study. Mov Disord 20:893–898

    Article  Google Scholar 

  25. Ashkan K, Blomstedt P, Zrinzo L, Tisch S, Yousry T, Limousin-Dowsey P, Hariz MI (2007) Variability of the subthalamic nucleus: the case for direct MRI guided targeting. Br J Neurosurg 21:197–200

    Article  PubMed  CAS  Google Scholar 

  26. Hamani C, Richter EO, Andrade-Souza Y, Hutchison W, Saint-Cyr JA, Lozano AM (2005) Correspondence of microelectrode mapping with magnetic resonance imaging for subthalamic nucleus procedures. Surg Neurol 63:249–253, discussion 253

    Article  PubMed  Google Scholar 

  27. Starr PA, Vitek JL, DeLong M, Bakay RA (1999) Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery 44:303–313, discussion 313–304

    Article  PubMed  CAS  Google Scholar 

  28. Ullman M, Vedam-Mai V, Krock N, Sudhyadhom A, Foote KD, Yachnis AT, Merritt S, Resnick AS, Zeilman P, Okun MS (2011) A pilot study of human brain tissue post-magnetic resonance imaging: information from the National Deep Brain Stimulation Brain Tissue Network (DBS-BTN). NeuroImage 54(Suppl 1):S233–S237

    Article  PubMed  Google Scholar 

  29. Massey LA, Miranda MA, Zrinzo L, Al-Helli O, Parkes HG, Thornton JS, So PW, White MJ, Mancini L, Strand C, Holton JL, Hariz MI, Lees AJ, Revesz T, Yousry TA (2011) High resolution MR anatomy of the subthalamic nucleus: imaging at 9.4 T with histological validation. Neuroimage 59:2035-2044

    Google Scholar 

  30. Traynor CR, Barker GJ, Crum WR, Williams SC, Richardson MP (2011) Segmentation of the thalamus in MRI based on T1 and T2. NeuroImage 56:939–950

    Article  PubMed  Google Scholar 

  31. Amirnovin R, Williams ZM, Cosgrove GR, Eskandar EN (2006) Experience with microelectrode guided subthalamic nucleus deep brain stimulation. Neurosurgery 58:ONS96–ONS102, discussion ONS196-102

    Article  PubMed  Google Scholar 

  32. Gross RE, Krack P, Rodriguez-Oroz MC, Rezai AR, Benabid AL (2006) Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson’s disease and tremor. Mov Disord 21(Suppl 14):S259–S283

    Article  PubMed  Google Scholar 

  33. Bejjani BP, Dormont D, Pidoux B, Yelnik J, Damier P, Arnulf I, Bonnet AM, Marsault C, Agid Y, Philippon J, Cornu P (2000) Bilateral subthalamic stimulation for Parkinson’s disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J Neurosurg 92:615–625

    Article  PubMed  CAS  Google Scholar 

  34. Nowinski WL, Chua BC, Volkau I, Puspitasari F, Marchenko Y, Runge VM, Knopp MV (2010) Simulation and assessment of cerebrovascular damage in deep brain stimulation using a stereotactic atlas of vasculature and structure derived from multiple 3- and 7-tesla scans. J Neurosurg 113:1234–1241

    Article  PubMed  Google Scholar 

  35. Park JH, Chung SJ, Lee CS, Jeon SR (2011) Analysis of hemorrhagic risk factors during deep brain stimulation surgery for movement disorders: comparison of the circumferential paired and multiple electrode insertion methods. Acta Neurochir (Wien) 153:1573–1578

    Article  Google Scholar 

  36. Terao T, Takahashi H, Yokochi F, Taniguchi M, Okiyama R, Hamada I (2003) Hemorrhagic complication of stereotactic surgery in patients with movement disorders. J Neurosurg 98:1241–1246

    Article  PubMed  Google Scholar 

  37. Xiaowu H, Xiufeng J, Xiaoping Z, Bin H, Laixing W, Yiqun C, Jinchuan L, Aiguo J, Jianmin L (2010) Risks of intracranial hemorrhage in patients with Parkinson’s disease receiving deep brain stimulation and ablation. Parkinsonism Relat Disord 16:96–100

    Article  PubMed  Google Scholar 

  38. Bronte-Stewart H, Louie S, Batya S, Henderson JM (2010) Clinical motor outcome of bilateral subthalamic nucleus deep-brain stimulation for Parkinson’s disease using image-guided frameless stereotaxy. Neurosurgery 67:1088–1093, discussion 1093

    Article  PubMed  Google Scholar 

  39. Dormont D, Ricciardi KG, Tande D, Parain K, Menuel C, Galanaud D, Navarro S, Cornu P, Agid Y, Yelnik J (2004) Is the subthalamic nucleus hypointense on T2-weighted images? a correlation study using MR imaging and stereotactic atlas data. AJNR Am J Neuroradiol 25:1516–1523

    PubMed  Google Scholar 

  40. Hariz MI, Krack P, Melvill R, Jorgensen JV, Hamel W, Hirabayashi H, Lenders M, Wesslen N, Tengvar M, Yousry TA (2003) A quick and universal method for stereotactic visualization of the subthalamic nucleus before and after implantation of deep brain stimulation electrodes. Stereotact Funct Neurosurg 80:96–101

    Article  PubMed  Google Scholar 

  41. Kitajima M, Korogi Y, Kakeda S, Moriya J, Ohnari N, Sato T, Hayashida Y, Hirai T, Okuda T, Yamashita Y (2008) Human subthalamic nucleus: evaluation with high-resolution MR imaging at 3.0 T. Neuroradiology 50:675–681

    Article  PubMed  Google Scholar 

  42. Brunenberg EJ, Platel B, Hofman PA, Ter Haar Romeny BM, Visser-Vandewalle V (2011) Magnetic resonance imaging techniques for visualization of the subthalamic nucleus. J Neurosurg 115:971–984

    Article  PubMed  Google Scholar 

  43. Duyn JH, van Gelderen P, Li TQ, de Zwart JA, Koretsky AP, Fukunaga M (2007) High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci USA 104:11796–11801

    Article  PubMed  CAS  Google Scholar 

  44. Nolte IS, Gerigk L, Al-Zghloul M, Groden C, Kerl HU (2012) Visualization of the internal globus pallidus: sequence and orientation for deep brain stimulation using a standard installation protocol at 3.0 Tesla. Acta Neurochir (Wien) 154:481-494

    Google Scholar 

  45. O’Gorman RL, Shmueli K, Ashkan K, Samuel M, Lythgoe DJ, Shahidiani A, Wastling SJ, Footman M, Selway RP, Jarosz J (2011) Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus. Eur Radiol 21:130–136

    Article  PubMed  Google Scholar 

  46. Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618

    Article  PubMed  Google Scholar 

  47. Cho ZH, Min HK, Oh SH, Han JY, Park CW, Chi JG, Kim YB, Paek SH, Lozano AM, Lee KH (2010) Direct visualization of deep brain stimulation targets in Parkinson disease with the use of 7-tesla magnetic resonance imaging. J Neurosurg 113:639–647

    Article  PubMed  Google Scholar 

  48. Maj JK, Paxinos G, Assheuer JK (2003) Atlas of the human brain. Elsevier, Amsterdam

    Google Scholar 

  49. Schaltenbrand G, Wahren W (1977) Atlas for stereotaxy of the human brain. Thieme, Stuttgart

    Google Scholar 

  50. Slavin KV, Thulborn KR, Wess C, Nersesyan H (2006) Direct visualization of the human subthalamic nucleus with 3 T MR imaging. AJNR Am J Neuroradiol 27:80–84

    PubMed  CAS  Google Scholar 

  51. Vertinsky AT, Coenen VA, Lang DJ, Kolind S, Honey CR, Li D, Rauscher A (2009) Localization of the subthalamic nucleus: optimization with susceptibility-weighted phase MR imaging. AJNR Am J Neuroradiol 30:1717–1724

    Article  PubMed  CAS  Google Scholar 

  52. Stark DD, Brandley WG (1999) Magnetic resonance imaging. C.V. Mosby, St. Louis

    Google Scholar 

  53. Haneder S, Attenberger UI, Biffar A, Dietrich O, Fink C, Schoenberg SO, Michaely HJ (2011) Gadofosveset: parameter optimization for steady-state imaging of the thoracic and abdominal vasculature. Investig Radiol 46:678-685

    Google Scholar 

  54. Landis JR, Koch GG (1977) An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33:363–374

    Article  PubMed  CAS  Google Scholar 

  55. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  PubMed  CAS  Google Scholar 

  56. Bushberg JT, Seibert JA, Boone JM, Leidholdt EM (2006) The essential physics of medical imaging. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  57. Krack P, Benazzouz A, Pollak P, Limousin P, Piallat B, Hoffmann D, Xie J, Benabid AL (1998) Treatment of tremor in Parkinson’s disease by subthalamic nucleus stimulation. Mov Disord 13:907–914

    Article  PubMed  CAS  Google Scholar 

  58. Ostergaard K, Sunde N, Dupont E (2002) Effects of bilateral stimulation of the subthalamic nucleus in patients with severe Parkinson’s disease and motor fluctuations. Mov Disord 17:693–700

    Article  PubMed  Google Scholar 

  59. Lee KH, Blaha CD, Garris PA, Mohseni P, Horne AE, Bennet KE, Agnesi F, Bledsoe JM, Lester DB, Kimble C, Min HK, Kim YB, Cho ZH (2009) Evolution of deep brain stimulation: human electrometer and smart devices supporting the next generation of therapy. Neuromodulation 12:85–103

    Article  PubMed  Google Scholar 

  60. McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL (2004) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115:1239–1248

    Article  PubMed  Google Scholar 

  61. Cuny E, Guehl D, Burbaud P, Gross C, Dousset V, Rougier A (2002) Lack of agreement between direct magnetic resonance imaging and statistical determination of a subthalamic target: the role of electrophysiological guidance. J Neurosurg 97:591–597

    Article  PubMed  Google Scholar 

  62. Biswas J, Nelson CB, Runge VM, Wintersperger BJ, Baumann SS, Jackson CB, Patel T (2005) Brain tumor enhancement in magnetic resonance imaging: comparison of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) at 1.5 versus 3 tesla. Investig Radiol 40:792–797

    Article  Google Scholar 

  63. Toda H, Sawamoto N, Hanakawa T, Saiki H, Matsumoto S, Okumura R, Ishikawa M, Fukuyama H, Hashimoto N (2009) A novel composite targeting method using high-field magnetic resonance imaging for subthalamic nucleus deep brain stimulation. J Neurosurg 111:737–745

    Article  PubMed  Google Scholar 

  64. Lambert C, Zrinzo L, Nagy Z, Lutti A, Hariz M, Foltynie T, Draganski B, Ashburner J, Frackowiak R (2011) Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. Neuroimage 60:83-94

    Google Scholar 

  65. Kurian MA, McNeill A, Lin JP, Maher ER (2011) Childhood disorders of neurodegeneration with brain iron accumulation (NBIA). Dev Med Child Neurol 53:394–404

    Article  PubMed  Google Scholar 

  66. McNeill A, Chinnery PF (2011) Neurodegeneration with brain iron accumulation. Handb Clin Neurol 100:161–172

    Article  PubMed  Google Scholar 

  67. Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51

    Article  PubMed  CAS  Google Scholar 

  68. Schicha H, Kasperek K, Feinendegen LE, Siller V, Klein HJ (1971) Iron content of the human brain and its correlation to age. Beitr Pathol 142:268–274

    PubMed  CAS  Google Scholar 

  69. Griffiths PD, Dobson BR, Jones GR, Clarke DT (1999) Iron in the basal ganglia in Parkinson’s disease. An in vitro study using extended X-ray absorption fine structure and cryo-electron microscopy. Brain 122(Pt 4):667–673

    Article  PubMed  Google Scholar 

  70. Zhang W, Sun SG, Jiang YH, Qiao X, Sun X, Wu Y (2009) Determination of brain iron content in patients with Parkinson’s disease using magnetic susceptibility imaging. Neurosci Bull 25:353–360

    Article  PubMed  CAS  Google Scholar 

  71. Gelman N, Gorell JM, Barker PB, Savage RM, Spickler EM, Windham JP, Knight RA (1999) MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology 210:759–767

    PubMed  CAS  Google Scholar 

  72. Elolf E, Bockermann V, Gringel T, Knauth M, Dechent P, Helms G (2007) Improved visibility of the subthalamic nucleus on high-resolution stereotactic MR imaging by added susceptibility (T2*) contrast using multiple gradient echoes. AJNR Am J Neuroradiol 28:1093–1094

    Article  PubMed  CAS  Google Scholar 

  73. Haacke EM, Ayaz M, Khan A, Manova ES, Krishnamurthy B, Gollapalli L, Ciulla C, Kim I, Petersen F, Kirsch W (2007) Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain. J Magn Reson Imaging 26:256–264

    Article  PubMed  Google Scholar 

  74. Ben-Haim S, Asaad WF, Gale JT, Eskandar EN (2009) Risk factors for hemorrhage during microelectrode-guided deep brain stimulation and the introduction of an improved microelectrode design. Neurosurgery 64:754–762, discussion 762–753

    Article  PubMed  Google Scholar 

  75. Rauscher A, Sedlacik J, Barth M, Haacke EM, Reichenbach JR (2005) Nonnvasive assessment of vascular architecture and function during modulated blood oxygenation using susceptibility weighted magnetic resonance imaging. Magn Reson Med 54:87–95

    Article  PubMed  Google Scholar 

  76. Daniluk S, Davies GK, Ellias SA, Novak P, Nazzaro JM (2010) Assessment of the variability in the anatomical position and size of the subthalamic nucleus among patients with advanced Parkinson’s disease using magnetic resonance imaging. Acta Neurochir (Wien) 152:201–210, discussion 210

    Article  Google Scholar 

  77. Balachandran R, Welch EB, Dawant BM, Fitzpatrick JM (2010) Effect of MR distortion on targeting for deep-brain stimulation. IEEE Trans Biomed Eng 57:1729–1735

    Article  PubMed  Google Scholar 

  78. Duchin Y, Abosch A, Yacoub E, Sapiro G, Harel N (2012) Feasibility of using ultra-high field (7 T) MRI for clinical surgical targeting. PLoS One 7:e37328

    Article  PubMed  CAS  Google Scholar 

  79. Shmueli K, de Zwart JA, van Gelderen P, Li TQ, Dodd SJ, Duyn JH (2009) Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn Reson Med 62:1510–1522

    Article  PubMed  Google Scholar 

  80. Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Andersen P, Vaughan JT, Merkle H, Ugurbil K, Hu X (2001) Imaging brain function in humans at 7 Tesla. Magn Reson Med 45:588–594

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo S. Nölte.

Additional information

Hans U. Kerl and Lars Gerigk contributed equally to this article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerl, H.U., Gerigk, L., Pechlivanis, I. et al. The subthalamic nucleus at 7.0 Tesla: evaluation of sequence and orientation for deep-brain stimulation. Acta Neurochir 154, 2051–2062 (2012). https://doi.org/10.1007/s00701-012-1476-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-012-1476-0

Keywords

Navigation